Let $\displaystyle I(\lambda) = \int_{0}^{\infty}\frac{\sin(\lambda x)}{x(1+x^2)}\;{dx} ~~ (\lambda > 0). $. Differentiating this w.r.t. $\lambda$ we have $\displaystyle I'(\lambda) = \int^{\infty}_{0} \frac{\cos(\lambda x) }{1+x^2}\;{dx}.$
Also $\displaystyle I''(\lambda) = -\int_{0}^{\infty}\frac{x\sin(\lambda x)}{1+x^2}\;{dx}$ thus $\displaystyle I(\lambda)-I''(\lambda) =\int_{0}^{\infty}\frac{(1+x^2) \sin( \lambda x)}{x(1+x^2)}\;{dx} = \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx}.$
Letting $\displaystyle t = \lambda x$ we have $\displaystyle \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx} = \int_{0}^{\infty} \frac{\sin{t}}{t}\;{dt} = \frac{\pi}{2}$ (well-known). Hence $\displaystyle I(\lambda)-I''(\lambda) = \frac{\pi}{2}$.
Solving $ I''(\lambda)-I(\lambda)+\frac{\pi}{2} =0$ we get $ I(\lambda) = \mathcal{C}_{1}e^x+\mathcal{C}_{2}e^{-x}+\frac{\pi}{2}$. From the integral we observe that $I(0) = 0$, thus we have $ 0 = \mathcal{C}_{1}+\mathcal{C}_{2}+\frac{\pi}{2}$ so $\mathcal{C}_{1}+\mathcal{C}_{2} = -\frac{\pi}{2}$ (1). But also by differentiating we get $I'(\lambda) = \mathcal{C}_{1}e^x-\mathcal{C}_{2}e^{-x}$. From our integral we observe that $I'(0) = \frac{\pi}{2}$, and thus we have $ \mathcal{C}_{1}-\mathcal{C}_{2} = \frac{\pi}{2}$ (2). Adding (1) and (2) we have $\mathcal{C}_{1} = 0$ and/so $\mathcal{C}_{2} = -\frac{\pi}{2}$. Hence $\displaystyle I'(\lambda) = \frac{\pi}{2e^{\lambda}}$, thus:
$$\displaystyle \int^{\infty}_{0} \frac{\cos(x) }{1+x^2} = \frac{\pi}{2e}. $$