Solve the following integral without complex analysis:

Click For Summary
SUMMARY

The integral \(\int^{\infty}_{0} \frac{\cos(x)}{1+x^2}\,dx\) evaluates to \(\frac{\pi}{2e}\). This result can be derived using integration by parts, as well as through differentiation under the integral sign, which is a method praised by physicist Richard Feynman. The discussion highlights various approaches, including the use of residues and Fourier transforms, although the focus remains on non-complex analysis methods as requested by the teacher.

PREREQUISITES
  • Understanding of integral calculus, specifically improper integrals.
  • Familiarity with integration techniques, including integration by parts.
  • Knowledge of differentiation under the integral sign.
  • Basic concepts of Fourier transforms and residues (for context, not for use in this specific solution).
NEXT STEPS
  • Study the method of integration by parts in depth, particularly its application to improper integrals.
  • Learn about differentiation under the integral sign and its implications in solving integrals.
  • Explore the properties and applications of Fourier transforms in solving integrals.
  • Investigate the residue theorem and its use in evaluating complex integrals.
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus techniques, particularly those focused on evaluating integrals without resorting to complex analysis.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
\[\int^{\infty}_{0} \frac{\cos(x) }{1+x^2}\,dx\]

I know it can be solved by Fourier transform and also by residues , but my teacher
asked me to solve it by not using transformation or complex analysis (Happy)
 
Last edited by a moderator:
Physics news on Phys.org
ZaidAlyafey said:
$\int^{\infty}_{0} \frac{\cos(x) }{1+x^2}$

I know it can be solved by Fourier transform and also by residues , but my teacher
asked me to solve it by not using transformation or complex analysis (Happy)
Try integration by parts twice.

Warning: There are some limits that come up which I think can be removed. But I didn't check that in detail.

-Dan
 
topsquark said:
Try integration by parts twice.

-Dan

Is this just a suggestion , or does it really work because it doesn't get any simper ?

topsquark said:
Warning: There are some limits that come up which I think can be removed. But I didn't check that in detail.

-Dan

I don't get what you mean ?
 
ZaidAlyafey said:
$\displaystyle \int^{\infty}_{0} \frac{\cos(x) }{1+x^2}\;{dx}$

Let $\displaystyle I(\lambda) = \int_{0}^{\infty}\frac{\sin(\lambda x)}{x(1+x^2)}\;{dx} ~~ (\lambda > 0). $ Differentiating this w.r.t. $\lambda$ we have $\displaystyle I'(\lambda) = \int^{\infty}_{0} \frac{\cos(\lambda x) }{1+x^2}\;{dx}.$

Also $\displaystyle I''(\lambda) = -\int_{0}^{\infty}\frac{x\sin(\lambda x)}{1+x^2}\;{dx}$ thus $\displaystyle I(\lambda)-I''(\lambda) =\int_{0}^{\infty}\frac{(1+x^2) \sin( \lambda x)}{x(1+x^2)}\;{dx} = \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx}.$

Letting $\displaystyle t = \lambda x$ we have $\displaystyle \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx} = \int_{0}^{\infty} \frac{\sin{t}}{t}\;{dt} = \frac{\pi}{2}$ (well-known). Hence $\displaystyle I(\lambda)-I''(\lambda) = \frac{\pi}{2}$.
Solving $ I''(\lambda)-I(\lambda)+\frac{\pi}{2} =0$ we get $ I(\lambda) = \mathcal{C}_{1}e^x+\mathcal{C}_{2}e^{-x}+\frac{\pi}{2}$. From the integral we observe that $I(0) = 0$, thus we have $ 0 = \mathcal{C}_{1}+\mathcal{C}_{2}+\frac{\pi}{2}$ so $\mathcal{C}_{1}+\mathcal{C}_{2} = -\frac{\pi}{2}$ (1). But also by differentiating we get $I'(\lambda) = \mathcal{C}_{1}e^x-\mathcal{C}_{2}e^{-x}$. From our integral we observe that $I'(0) = \frac{\pi}{2}$, and thus we have $ \mathcal{C}_{1}-\mathcal{C}_{2} = \frac{\pi}{2}$ (2). Adding (1) and (2) we have $\mathcal{C}_{1} = 0$ and/so $\mathcal{C}_{2} = -\frac{\pi}{2}$. Hence $\displaystyle I'(\lambda) = \frac{\pi}{2e^{\lambda}}$, thus:

$$\displaystyle \int^{\infty}_{0} \frac{\cos(x) }{1+x^2} = \frac{\pi}{2e}. $$
 
Last edited:
Sherlock said:
Let $\displaystyle I(\lambda) = \int_{0}^{\infty}\frac{\sin(\lambda x)}{x(1+x^2)}\;{dx} ~~ (\lambda > 0). $. Differentiating this w.r.t. $\lambda$ we have $\displaystyle I'(\lambda) = \int^{\infty}_{0} \frac{\cos(\lambda x) }{1+x^2}\;{dx}.$

Also $\displaystyle I''(\lambda) = -\int_{0}^{\infty}\frac{x\sin(\lambda x)}{1+x^2}\;{dx}$ thus $\displaystyle I(\lambda)-I''(\lambda) =\int_{0}^{\infty}\frac{(1+x^2) \sin( \lambda x)}{x(1+x^2)}\;{dx} = \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx}.$

Letting $\displaystyle t = \lambda x$ we have $\displaystyle \int_{0}^{\infty} \frac{\sin(\lambda x)}{x}\;{dx} = \int_{0}^{\infty} \frac{\sin{t}}{t}\;{dt} = \frac{\pi}{2}$ (well-known). Hence $\displaystyle I(\lambda)-I''(\lambda) = \frac{\pi}{2}$.
Solving $ I''(\lambda)-I(\lambda)+\frac{\pi}{2} =0$ we get $ I(\lambda) = \mathcal{C}_{1}e^x+\mathcal{C}_{2}e^{-x}+\frac{\pi}{2}$. From the integral we observe that $I(0) = 0$, thus we have $ 0 = \mathcal{C}_{1}+\mathcal{C}_{2}+\frac{\pi}{2}$ so $\mathcal{C}_{1}+\mathcal{C}_{2} = -\frac{\pi}{2}$ (1). But also by differentiating we get $I'(\lambda) = \mathcal{C}_{1}e^x-\mathcal{C}_{2}e^{-x}$. From our integral we observe that $I'(0) = \frac{\pi}{2}$, and thus we have $ \mathcal{C}_{1}-\mathcal{C}_{2} = \frac{\pi}{2}$ (2). Adding (1) and (2) we have $\mathcal{C}_{1} = 0$ and/so $\mathcal{C}_{2} = -\frac{\pi}{2}$. Hence $\displaystyle I'(\lambda) = \frac{\pi}{2e^{\lambda}}$, thus:

$$\displaystyle \int^{\infty}_{0} \frac{\cos(x) }{1+x^2} = \frac{\pi}{2e}. $$


Feynman would be proud - differentiating under the integral sign!
 
ZaidAlyafey said:
I don't get what you mean ?
Well, I like Sherlock's method better, but here's a bit more on the integration by parts.

Obviously
\int_a^b p~dq = pq |_a^b - \int_a^b q~dp

There will be two limits cos(x)atan(x)|_0^{\infty} and sin(x)atan(x)|_0^{\infty}

I didn't check these limits to see if they actually cancel out. (I still didn't. Lazy again.)

-Dan

Ach-choo: You say that like it's a bad thing...
 
Ok , I will show the other two methods .

First : By residues :

\int^{\infty}_0 \frac{\cos(x) }{x^2+1}=\frac{1}{2}\int^{\infty}_{-\infty} \frac{\cos(x) }{x^2+1}=\mathcal{Re}( \frac{1}{2}\int^{\infty}_{-\infty} \frac{e^{iz} }{z^2+1})

By drawing a sermi-circle in the upper half plane we get the following :

\frac{1}{2}\int^{\infty}_{-\infty} \frac{e^{ix} }{x^2+1}= \pi i \mathcal{Rez}(f(z) ,i )

\pi i (\frac{e^{iz}}{2z}|_{z=i})= \pi i \frac{e^{-1}}{2i}= \frac{\pi}{2e}
 
I'm looking forward to the Fourier transform method (unless you meant Laplace (Giggle)).
 
Second by the Fourier integral :

f(x)= \int^{\infty}_0 A(\lambda) \cos(\lambda x)d\lambda +\int^{\infty}_0 B(\lambda) \sin(\lambda x)d\lambda -----(1)

f(x) = \begin{cases}e^{-x} &; \mbox{if } x > 0 \\e^{x} &; \mbox{if } x<0 \\1 &; \mbox{if } x=0\end{cases}

A(\lambda)= \frac{1}{\pi}\int^{\infty}_{-\infty}\, f(x)\, \cos(\lambda x)dx

Now since f(x) is an even function :

A(\lambda)= \frac{2}{\pi}\int^{\infty}_{0}\, e^{-x}\, \cos(\lambda x)dx =\frac{ 2\mathcal{L}(\cos(\lambda x))}{\pi}= \frac{2}{\pi(x^2+\lambda^2)}

B(\lambda)=\int^{\infty}_{-\infty} f(x) \sin(\lambda x)dx=0

By evenness the upper integral is zero .

substituting in ---(1) we get the following : e^{-x}= \int^{\infty}_0 \frac{2\cos(\lambda x)}{\pi(x^2+\lambda^2)}d\lambda \,\, \, x>0

Now putting x =1 we get the following :

e^{-1}= \frac{2}{\pi}\int^{\infty}_0 \frac{\cos(\lambda)}{(1+\lambda^2)}d\lambda

\int^{\infty}_0 \frac{\cos(x)}{(1+x^2)}dx= \frac{\pi}{2e}
 
Last edited:
  • #10
Sherlock said:
I'm looking forward to the Fourier transform method (unless you meant Laplace (Giggle)).

I always think that Laplace transform is a special case of the general Fourier transform .
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K