Solve the given differential equation

Click For Summary
The discussion revolves around solving differential equations using substitution and the chain rule. The original equation involved integrating the expression x(1+x^2)^{-1/2}dx, which was simplified by letting u = 1 + x^2, leading to straightforward integration. A participant posed a question about handling a similar expression, x(1+x^2)^{-1/5}dx, suggesting that the same substitution method could apply. However, some participants noted that different forms might require different approaches, particularly when the expressions differ significantly. The conversation emphasizes the convenience of certain integrals and the importance of recognizing when a substitution is effective.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
separation of variables
My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

1691325775186.png
 
Physics news on Phys.org
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
You would handle it the same way that I would suppose the original integration was done: Sub ##u = 1 + x^2## and go from there.

-Dan
 
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
Where did you get ##\dfrac{1}{5}## from?
 
fresh_42 said:
Where did you get ##\dfrac{1}{5}## from?
I just came up with that part of the question. I will amend my question and re-post it again. (post 5)
 
topsquark said:
You would handle it the same way that I would suppose the original integration was done: Sub ##u = 1 + x^2## and go from there.

-Dan
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
 
chwala said:
I just came up with that part of the question. I will amend my question and re-post it again. (post 5)
I do not see any ##5##. So where exactly do you see it?
 
chwala said:
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
I don't see that a simple substitution would work for this revised problem. For your 2nd example above, the expression in parentheses is ##1 + x^2##. Outside the parentheses you have something that is almost the differential of ##1 + x^2## (differing only by a constant multiplier). For a similar kind of substitution for your first example you would need the differential (or a constant multiple of it) outside the parentheses.
 
  • Like
Likes topsquark and chwala
fresh_42 said:
Where did you get ##\dfrac{1}{5}## from?
He's asking about a different, but related, problem.
chwala said:
Now to my question, supposing we had ##x(1+x^2)^{−1/5}dx## in the place of ##x(1+x^2)^{−1/2}dx##
How would we handle this?
Which was answered by @topsquark.
topsquark said:
You would handle it the same way that I would suppose the original integration was done: Sub ##u=1+x^2## and go from there.
 
  • Like
Likes chwala, topsquark and fresh_42
chwala said:
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
The easiest way to see it is to do it in two steps:
1. Let ##u = x^{1/2}##.

2. Then let ##v = u + 1##.

But you can come up with all sorts of ugly examples, and many of them do not have an actual solution. If your question is about integration techniques of
##\displaystyle \int \dfrac{x \, dx }{(1 + x^a)^b}##

you really need to put it in it's own thread.

-Dan
 
  • #10
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
What happened with the y' in the separation process( from top line to 2nd line)?
 
  • #11
WWGD said:
What happened with the y' in the separation process( from top line to 2nd line)?
Check post ##8##. My interest is solely on the highlighted part of post ##1## in red.