Solve the given parametric equation

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Parametric
Click For Summary

Homework Help Overview

The discussion revolves around solving a parametric equation involving variables defined in terms of a parameter \( p \). The problem includes differentiation and the exploration of relationships between points on the curve, specifically in the context of conic sections.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants present various approaches to differentiate the parametric equations and derive relationships between points A and B. Some explore the implications of the curve being a hyperbola, while others focus on the algebraic manipulation of the equations. There are also discussions about potential typos in the equations presented.

Discussion Status

Several participants have contributed different methods and insights, with some offering corrections to earlier posts. The conversation is ongoing, with no clear consensus reached yet on the best approach or final solution.

Contextual Notes

Participants are working under the constraints of a homework assignment, which may limit the information available or the methods that can be employed. There is an emphasis on exploring different ways to solve the problem without providing complete solutions.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached
Relevant Equations
differentiation
1654948836414.png

For part (a) i have two approaches;
We can have,

##\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot\dfrac{dt}{dx}##
##\dfrac{dy}{dx}=-\dfrac{2}{x^2}##
##\dfrac{dy}{dx}\left[x=\frac{1}{p}\right]=-2p^2##

Therefore,
##p(y-2p)=-2p^3x+2p^2##
##py=-2p^3x+4p^2##
##y=-2p^2x+4p##The other approach to this is;
since ##y=2t## and ##x=\dfrac{1}{t}## then we shall have the cartesian equation, ##xy=2.## It follows that
##y+x\dfrac{dy}{dx}=0##
##\dfrac{dy}{dx}=-\dfrac{y}{x}=-2p^2##

The other steps shall follow as previously shown.

For part (b),
We have
##y=-2p^2x+4p##
at ##x## axis, ##y=0## therefore
##2p^2x=4p##
##px=2##
##x=\dfrac{2}{p}##
The co ordinates at ##A\left[\dfrac{2}{p},0\right]##
##PA=\sqrt{\left[\dfrac{2}{p}-\dfrac{1}{p}\right]^2+[2p-0]^2}=\dfrac{\sqrt{4p^4+1}}{p}##

Let the gradient of the normal be given by ##m##,
##-2p^2\cdot m=-1##
##m=\dfrac{1}{2p^2}##
therefore we shall have for ##PB##
##\dfrac{y-2p}{px-1}=\dfrac{1}{2p^2}##
##2p^3(y-2p)=px-1##
##-4p^4=px-1##
##x=\dfrac{1-4p^4}{p}##

The co ordinates at ##B\left[\dfrac{1-4p^4}{p},0\right]##

##PB=\sqrt{\left[\dfrac{1-4p^4}{p}-\dfrac{1}{p}\right]^2+[2p-0]^2}=\sqrt{16p^6+4p^2}=\sqrt{4p^2(4p^4+1)}=2p\cdot\sqrt{4p^4+1}##

Therefore, ##PA:PB=\dfrac{1}{p}:2p=1:2p^2##

Of course this was easy...i always like seeking different ways if any to solve this hence my posts...Cheers guys:cool:
 
Last edited:
  • Like
Likes   Reactions: Maarten Havinga and Delta2
Physics news on Phys.org
I don't know if you can do something cunning using the fact that the curve is a conic section (hyperbola).
 
  • Informative
Likes   Reactions: Delta2
I spotted one small typo, you have omitted a ##p## factor in the equation following the
chwala said:
Homework Statement:: See attached
Relevant Equations:: differentiation

therefore we shall have for PB
The correct should be $$\frac{p(y-2p)}{px-1}=\frac{1}{2p^2}$$. The rest of solution remains correct cause you bring back the p factor in the following lines.
 
  • Like
Likes   Reactions: chwala
You can solve (b) by taking ##x'=dx/dt## and ##y'=dy/dt## at P. The length ratio of PA to PB will be ##|y'/x'|## due to ##(P,A,X)## being congruent to ##(B,A,P)##. This evaluates to 2 : ##p^{-2}## and multiply by ##p^2## to get the right answer! :-)
 
  • Like
Likes   Reactions: chwala

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K