Solve the given problem involving logarithms

Click For Summary
SUMMARY

The discussion focuses on solving the logarithmic equation \(\frac{\log_{11} x}{\log_{11} 4} = \log_{11} (x+6)\) using numerical methods. The participant initially applied Newton's method, yielding an approximate solution of \(x \approx 3.73\). An alternative approach using the Secant method was also explored, which provided a quicker convergence to the solution. The final result confirmed that \(x \approx 3.725022033\) is accurate, demonstrating the effectiveness of both methods in solving logarithmic equations.

PREREQUISITES
  • Understanding of logarithmic functions and properties
  • Familiarity with Newton's method for root finding
  • Knowledge of the Secant method for numerical analysis
  • Basic calculus concepts, including derivatives
NEXT STEPS
  • Study the derivation and applications of Newton's method in detail
  • Learn about the Secant method and its advantages over Newton's method
  • Explore numerical methods for solving nonlinear equations
  • Investigate the convergence properties of various root-finding algorithms
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in numerical methods for solving equations will benefit from this discussion.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
This is my own question (set by me).

Solve for ##x## given,

##\log_{4} x = \log_{11} (x+6)##.
Relevant Equations
understanding of change of base.
In my working i have,

##\dfrac{\log_{11} x }{\log_{11} 4}= \log_{11} (x+6)##

##\dfrac{\log_{11} x }{0.5781}= \log_{11} (x+6)##

##\log_{11} x = \log_{11} \left[(x+6)\right]^{0.5781}##

##x^{1.729} = x+ 6##

##x^{1.729} -x-6=0##

Having ##f(x) = x^{1.729} -x-6##

At this point i made use of Newton's method. i.e

##x_{n+1} =x_n - \dfrac{f(x)}{f'(x)}##

Letting ##x_0 = 3##,

##x_1 = 3.8127##

##x_2= 3.8127- \dfrac{0.3019}{3.5868} = 3.72854##

##x_3= 3.72854 - \dfrac{0.00320}{3.512807} = 3.7191##

##x_4= 3.7191 - \dfrac{-0.029919}{3.504475} = 3.727##

##x≅3.73##

There may be a better approach hence my post. Cheers.
 
Last edited:
  • Like
Likes   Reactions: WWGD and Delta2
Physics news on Phys.org
chwala said:
There may be a better approach
Yes. Using midpoint:
##f(x)= \log_{11} (x+6)-\log_{4} x##
##x=3, f(x)=0.12383257##
##x=4, f(x)=-0.039747432##
##x=3.5, f(x)=0.035184142##
##x=3.75, f(x)=-0.003751076##
##x=3.625, f(x)=0.015322586##
##x=3.6875, f(x)=0.005690808##
##x=3.71875, f(x)=0.000946551##
##x=3.734375, f(x)=-0.001408039##
##x=3.7265625, f(x)=-0.000232195##
 
  • Like
  • Informative
Likes   Reactions: WWGD, PeroK, Delta2 and 1 other person
Since I'm not a mathematician, I have no idea what my method is called, but it seems to converge on the answer a bit quicker than Newton's method.

##f(x)= \log_{11} (x+6)-\log_{4} x##

##x_1 = 3, f(x)= 0.1238325696##
##x_2 = 4, f(x)= -0.0397474322##

From here I find the slope and intercept of the above two points and solve for x when f(x) is set to zero.
I then make that my new x and repeat the process until f(x) = 0

##x_3 = 3.757015333, f(x)= -0.0047993244##
##x_4 = 3.723646939, f(x)= 0.0002073635##
##x_5 = 3.725028968, f(x)= -0.0000010455##
##x_6 = 3.725022035, f(x)= -0.0000000002##
##x_7 = 3.725022033, f(x)= 0.0000000000##

Hopefully a real mathematician will recognize it and give it a name.

In any event
chwala said:
x≅3.73
appears to be correct.
 
  • Like
Likes   Reactions: WWGD, Khi Choy Xichdu and chwala
Or, put it in a spreadsheet:

xf(x)
3.725022033325​
-2.07E-14​
3.725022033326​
1.30E-13​
 
  • Like
Likes   Reactions: Khi Choy Xichdu
Iterates $$ x _ 3 = 3,757015333 $$ $$ x _ 4 = 3,723646939 $$ $$ x _ 5 = 3,725028968 $$ $$ x _ 6 = 3,725022035 $$ $$ x _ 7 = 3,725022033 $$ for the function $$ f ( x ) = log _ { 11 } ( x + 6 ) – log _ { 4 } x $$ with initials $$ x _ 1 = 3 $$ $$ x _ 2 = 4 $$ are produced by a secant method. In this method iterates are produced by using the recurrence relation $$ x _ { n } = x _ { n – 1 } – f ( x _ { n - 1 } ) \frac { x _ { n - 1 } – x _ { n - 2 } } { f ( x _ { n – 1 } ) – f ( x _ { n – 2 } ) } $$ and the method can be thought of as an approximation of a tangent method.
 
  • Like
Likes   Reactions: OmCheeto and WWGD
Thanks Gavran!
I see that upon inspection that my equation
$$ x_3 = x_2 - \frac {y_2} {m_2} $$
is equivalent to your equation
$$ x _ { n } = x _ { n – 1 } – f ( x _ { n - 1 } ) \frac { x _ { n - 1 } – x _ { n - 2 } } { f ( x _ { n – 1 } ) – f ( x _ { n – 2 } ) } $$

Can't say I remember hearing of the 'Secant Method', but I find this interesting; "...the secant method predates Newton's method by over 3000 years."
ref: wiki
 
  • Like
Likes   Reactions: Gavran

Similar threads

Replies
10
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K