I Solve the problem involving Rings

chwala
Gold Member
Messages
2,825
Reaction score
413
TL;DR Summary
Kindly see attached (reference is highlighted part)
1690385428932.png


Its a bit clear; i can follow just to pick another polynomial say

##(x+1)^3## are we then going to have ##(2x-2)+ x+3##?

or it has to be a polynomial with

##x^2+1## being evident? cheers...
 
Physics news on Phys.org
Let's see ...
\begin{align*}
(x+1)^3&=(x+1)^2\cdot (x+1)=2x\cdot (x+1)=2x^2+2x=2\cdot (x^2+1) -2+2x=2x-2=2\cdot (x-1)\\
&\text{crosscheck}\\
(x+1)^3&=x^3+3x^2+3x+1=x\cdot (-1)+3\cdot (-1)+3x+1=2x-2=2\cdot(x-1)
\end{align*}
We identify ##x^2=-1.##
 
...I was getting a bit lost on this line:

$$2x^2+2x=2\cdot (x^2+1) -2+2x=2x-2=2\cdot (x-1)$$

...but i now i got it by letting,

##x^2+x=x^2+1+m##

therefore

##m=x-1##

other steps follow well.
 
...which means that

##(x+1)^4=(x+1)^2 (x+1)^2 =2x ⋅2x=4x^2=4(-1)=-4##

Cross check:

##(x+1)^4=x^4+4x^3+6x^2+4x+1=1-4x-6+4x+1=-4##
 
Lastly on this just to get the drift of things, if we have a polynomial say;

##x^3+4##

then this becomes,

##x(x^2)+4=x(-1)+4=4-x##

...
 
chwala said:
Lastly on this just to get the drift of things, if we have a polynomial say;

##x^3+4##

then this becomes,

##x(x^2)+4=x(-1)+4=4-x##

...
Right. The ring ##\mathbb{R}[x] ## is an integral domain, the ideal ##\langle x^2+1 \rangle## is prime and maximal. This makes ##\mathbb{R}[x]/\langle x^2+1 \rangle ## a field, the complex numbers. So ##x= \mathrm{i}.##

Here we have ##x^3+4= \mathrm{i}^3+4=-\mathrm{i} +4 =4-x.##
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top