Solve the problem involving the velocity - time graph

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    equation
Click For Summary
SUMMARY

The discussion focuses on solving a problem involving a velocity-time graph using simultaneous equations and gradient concepts. The user successfully derived values for variables, specifically finding that \( x = 500 \) and \( m = 40 \) through the equations \( 5m + x = 700 \) and \( 1200 = 5m + 2x \). Additionally, the user calculated deceleration using the gradient formula, resulting in \( y_1 = 20 \). The importance of clearly defining symbols and justifying equations for better understanding was emphasized throughout the conversation.

PREREQUISITES
  • Understanding of simultaneous equations in algebra
  • Familiarity with velocity-time graph concepts
  • Knowledge of gradient calculations in mechanics
  • Ability to compute areas under curves, specifically trapezoidal areas
NEXT STEPS
  • Study the application of simultaneous equations in physics problems
  • Learn about calculating areas under velocity-time graphs
  • Explore gradient concepts in motion analysis
  • Review the principles of acceleration and its representation in equations
USEFUL FOR

Students studying mechanics, physics educators, and anyone involved in solving problems related to motion and graph analysis will benefit from this discussion.

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
Mechanics
1711792658609.png


For part (a)

1711796581561.png


I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

1711792926502.png



Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

1711793499268.png




just sharing in case there is more insight.
 
Last edited:
Physics news on Phys.org
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
 
  • Like
  • Love
Likes SammyS, erobz, MatinSAR and 1 other person
kuruman said:
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
done.
 
chwala said:
done.
Not completely.

Your solution to part (b) is well organized and we can infer what the variables represent by your labelling on your graph for part (a).
It would have been good for you to indicate that the area under the velocity-time graph gives the distance traveled, and that you were using units of metes for that, and that you computed the area using the formula for area of a trapezoid.
Also, your answers should definitely include units.

For part(d):
You have previously used the variable, ##m##, for another purpose in parts (a) and (b). Besides, we have a name for this quantity, namely acceleration.

If you have made changes to the OP as a result of @kuruman 's comments, you should indicate that when you edit the OP. I know this has been pointed out on other occasions.

chwala said:
Homework Statement: see attached
Relevant Equations: Mechanics

For part (a)

View attachment 342548

I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

View attachment 342546


Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

View attachment 342547

just sharing in case there is more insight.
 
  • Like
Likes Lnewqban and kuruman
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
24
Views
14K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K