Solve the problem involving the velocity - time graph

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    equation
Click For Summary

Homework Help Overview

The discussion revolves around a problem involving a velocity-time graph, with participants addressing various parts of the problem through equations and concepts related to mechanics.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore simultaneous equations to solve for variables related to motion, while also discussing the interpretation of the area under the velocity-time graph as distance traveled. There are mentions of gradient concepts in relation to deceleration.

Discussion Status

Some participants provide feedback on clarity and organization of the original poster's solution, suggesting improvements in defining variables and justifying equations. There is acknowledgment of the need for units in answers and the potential confusion arising from variable reuse.

Contextual Notes

There are indications that the original poster's solution may lack clarity in certain areas, particularly in defining terms and providing justifications for their approach. The discussion also highlights the importance of consistent variable usage and the need for units in calculations.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached
Relevant Equations
Mechanics
1711792658609.png


For part (a)

1711796581561.png


I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

1711792926502.png



Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

1711793499268.png




just sharing in case there is more insight.
 
Last edited:
Physics news on Phys.org
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
 
  • Like
  • Love
Likes   Reactions: SammyS, erobz, MatinSAR and 1 other person
kuruman said:
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
done.
 
chwala said:
done.
Not completely.

Your solution to part (b) is well organized and we can infer what the variables represent by your labelling on your graph for part (a).
It would have been good for you to indicate that the area under the velocity-time graph gives the distance traveled, and that you were using units of metes for that, and that you computed the area using the formula for area of a trapezoid.
Also, your answers should definitely include units.

For part(d):
You have previously used the variable, ##m##, for another purpose in parts (a) and (b). Besides, we have a name for this quantity, namely acceleration.

If you have made changes to the OP as a result of @kuruman 's comments, you should indicate that when you edit the OP. I know this has been pointed out on other occasions.

chwala said:
Homework Statement: see attached
Relevant Equations: Mechanics

For part (a)

View attachment 342548

I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

View attachment 342546


Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

View attachment 342547

just sharing in case there is more insight.
 
  • Like
Likes   Reactions: Lnewqban and kuruman

Similar threads

Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
24
Views
14K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K