Solve Trigonometry Angles: Degrees, Minutes & Seconds

  • Context: MHB 
  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    Angles Trigonometry
Click For Summary

Discussion Overview

The discussion revolves around solving problems related to trigonometry, specifically focusing on angles in degrees, minutes, and seconds, as well as the relationship between angles in a right-angled triangle measured in degrees and gradians. The scope includes mathematical reasoning and problem-solving techniques.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Technical explanation

Main Points Raised

  • The first problem asks how many degrees, minutes, and seconds are passed over in $11\frac{1}{9}$ minutes by the hour and minute hands of a watch.
  • The second problem involves finding the acute angles of a right-angled triangle where one angle is expressed in degrees and the other in gradians, with some participants noting that 400 gradians is equivalent to 360 degrees.
  • One participant proposes that if angle $B$ is measured in gradians, it can be expressed in degrees as $0.9x$, where $x$ is the measure in gradians.
  • Another participant provides a mathematical derivation showing that if $x$ is the measure in gradians and $y$ is the measure in degrees, then the equation $90^{\circ} + 0.9x + y = 180^{\circ}$ can be used to find the angles.

Areas of Agreement / Disagreement

Participants express differing interpretations of the second problem, particularly regarding the measurement units of the angles. While some agree on the mathematical relationships, there is no consensus on the interpretation of the problem statement.

Contextual Notes

There are assumptions regarding the definitions of degrees and gradians that may not be explicitly stated. The mathematical steps presented by participants may depend on these definitions and the context of the problems.

Drain Brain
Messages
143
Reaction score
0
please help me to solve these problems,

1. how many degrees, minutes, and seconds are respectively passed over in $11\frac{1}{9}$ minutes by the hour and minute hands of a watch?

2. The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other; express both angles in degrees.
 
Mathematics news on Phys.org
Drain Brain said:
2. The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other; express both angles in degrees.

View attachment 2986

The sum of the angles of a triangle is equal to $180^{\circ}$.

Therefore:

$$\hat{A}+\hat{B}+\hat{C}=180^{\circ} \Rightarrow 90^{\circ}+\hat{B}+\hat{C}=180^{\circ} \Rightarrow \hat{B}+\hat{C}=90^{\circ}$$

"The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other":
The two acute angles of the above right-angles trianle are $\hat{B}$ and $\hat{C}$.

So, $\hat{B}=\hat{C}$.

Replacing this at the equation $\hat{B}+\hat{C}=90^{\circ}$, we get the following:

$$\hat{B}+\hat{C}=90^{\circ} \Rightarrow 2 \hat{B}=90^{\circ} \Rightarrow \hat{B}=\hat{C}=45^{\circ}$$
 

Attachments

  • rt.png
    rt.png
    1.6 KB · Views: 131
Drain Brain said:
please help me to solve these problems,

1. how many degrees, minutes, and seconds are respectively passed over in $11\frac{1}{9}$ minutes by the hour and minute hands of a watch?

2. The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other; express both angles in degrees.

Can you show us what you have tried? This way our helpers know where you are stuck and can better help.

mathmari said:
View attachment 2986

The sum of the angles of a triangle is equal to $180^{\circ}$.

Therefore:

$$\hat{A}+\hat{B}+\hat{C}=180^{\circ} \Rightarrow 90^{\circ}+\hat{B}+\hat{C}=180^{\circ} \Rightarrow \hat{B}+\hat{C}=90^{\circ}$$

"The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other":
The two acute angles of the above right-angles trianle are $\hat{B}$ and $\hat{C}$.

So, $\hat{B}=\hat{C}$.

Replacing this at the equation $\hat{B}+\hat{C}=90^{\circ}$, we get the following:

$$\hat{B}+\hat{C}=90^{\circ} \Rightarrow 2 \hat{B}=90^{\circ} \Rightarrow \hat{B}=\hat{C}=45^{\circ}$$

I believe the OP was saying that one angle is measured in gradians while the other it in degrees. 400 gradians is equivalent to 360 degrees.
 
MarkFL said:
I believe the OP was saying that one angle is measured in gradians while the other it in degrees. 400 gradians is equivalent to 360 degrees.

Oh, I'm sorry.. (Lipssealed)(Wasntme)

The angle $A$ is $90^{\circ}$.
Let the acute angle $B$ be measured in gradians, so the angle $B$ is $x$ gradians which is equal to $\frac{360 x}{400}=0.9 x$ degrees.
The angle $C$ is $y$ degrees.

"The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other": $x=y$

The sum of the angles of the triangle is equal to $180$ degrees.

$$90^{\circ}+0.9 x+y=180^{\circ} \Rightarrow 0.9 x+x=90^{\circ} \Rightarrow 1.9x=90^{\circ} \Rightarrow x=\left (\frac{90}{1.9}\right )^{\circ}$$

Therefore, the angle $B$ is $ \left (0.9\cdot \frac{90}{1.9}\right )^{\circ}$ and the angle $C$ is $\left (\frac{90}{1.9}\right )^{\circ}$.
 
Last edited by a moderator:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
10K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K