Undergrad Solving 2D Heat Equation w/ FEM & Galerkin Method

  • Thread starter Thread starter bob012345
  • Start date Start date
  • Tags Tags
    2d Fem
Click For Summary
The discussion focuses on solving the 2D Laplace equation using the Finite Element Method (FEM) and the Galerkin method, with specified edge temperatures as boundary conditions. The user encounters issues during integration by parts, where all terms cancel out, leading to confusion about the setup. They realize the problem lies in evaluating the first term after integration by parts, needing to use the slope at the limits of integration rather than substituting the full expression. Additional inquiries arise regarding the proper inclusion of boundary conditions and conceptual challenges with the 2D element formulation. The conversation highlights the complexities of applying FEM to the Laplace equation under specific constraints.
bob012345
Gold Member
Messages
2,299
Reaction score
1,021
TL;DR
Solving a 2D temperature problem but having an issue with the proper setup of the Galerkin method. All my terms are zero.
I want to solve the 2D heat equation

$$\frac{∂^2 {T}}{ ∂x^2} + \frac{∂^2 {T}}{ ∂y^2} = 0$$

The only boundary conditions is I will specify the edge temperatures but there are no heat sources.

So I create an average temperature function ##\tilde{T}## and weighting functions ##S_i## over a rectangular element with four nodes with i=1,2,3,4.
Screen Shot 2022-05-02 at 4.23.13 PM.png


Using numbers instead of letters for clarity I wish to solve first for the weighting functions assuming a form for my average temperature function;
$$\tilde{T} = b_1 + b_2x +b_3y +b_4xy$$

I solve for the coefficients to get my weighting functions and my average temperature function;

$$S_1 = (1 - \frac{x}{l}) (1 - \frac{y}{w})$$
$$S_2 = \frac{x}{l}(1 - \frac{y}{w})$$
$$S_3 = \frac{xy}{lw}$$
$$S_4 = \frac{y}{w}(1 - \frac{x}{l})$$

Then;
$$\tilde{T} = T^e = S_1T_1 + S_2T_2 + S_3T_3 + S_4T_4$$

Following the Galerkin method I minimize the Residual

$$\iint_A S_i R \,dA = \iint_A S_i (\frac{∂^2 \tilde{T}}{ ∂x^2} + \frac{∂^2 \tilde{T}}{ ∂y^2} )\,dA = 0$$

Now I use integration by parts to eliminate the second order derivative. This is just for the x derivative part of one of the four equations;

$$\iint_A S_i \frac{∂^2 \tilde{T}}{ ∂x^2}\,dA = \int_Y \Big[ S_i \frac{∂ \tilde{T}}{ ∂x} \Big |_{x_1}^{x_2} - \int_X \frac{∂S_i}{∂x} \frac{∂ \tilde{T}}{ ∂x} \,dX \Big] dY$$ where the index goes to 4.

My problem is when I integrate this to get my node equations all the terms go to zero. I mean the two integrals exactly cancel for each node variable. My question is this, did I set up this correctly with the integration by parts over a double integral? I used the integration of parts for the x integral then when manipulating the x derivative terms. Thanks.

EDIT: I think I found the issue. It is how to evaluate the first term after integration by parts. I was substituting the full expression for ##\frac{∂ \tilde{T}}{ ∂x}## back in when it should be evaluated as the slope at the limits of integration. I found it by revisiting my 1D reference problem. Thanks.
 
Last edited:
  • Like
Likes Delta2
Physics news on Phys.org
bob012345 said:
Summary: Solving a 2D temperature problem but having an issue with the proper setup of the Galerkin method. All my terms are zero.

I want to solve the 2D heat equation

∂2T∂x2+∂2T∂y2=0
it is not the heat equation it is the Laplace
 
  • Like
Likes berkeman and bob012345
wrobel said:
it is not the heat equation it is the Laplace
There are no heat sources. Only boundary edge temperature constrains.
 
I understand. Nevertheless it is the Laplace equation.
 
  • Like
Likes bob012345
wrobel said:
I understand. Nevertheless it is the Laplace equation.
I agree but can you tell me how I should include the boundary conditions? I am a bit fuzzy on that. Should there be some form of source term? Thanks.
 
To solve the Laplace equation ##\Delta u=0## in a rectangular region $$0\le x\le a,\quad 0\le y\le b$$ with known boundary conditions
$$u(x,0)=\alpha(x),\quad u(0,y)=\beta(y),\quad u(a,y)=\gamma(y),\quad u(x,b)=\psi(x)$$
you can find a solution as a sum of solutions of the following two problems
$$\Delta u_1=0,\quad u_1(x,0)=0=u_1(x,b)=0,\quad u_1(0,y)=\beta(y),\quad u_1(a,y)=\gamma(y)$$
and
$$\Delta u_2=0,\quad u_2(x,0)=\alpha(x),\quad u_2(x,b)=\psi(x),\quad u_2(0,y)=0= u_2(a,y)$$
Further
$$u_1=\sum_{k=0}^\infty v_k(x)\sin(\pi k y/b),\quad u_2=\sum_{k=0}^\infty w_k(y)\sin(\pi k x/a)$$
 
Last edited:
  • Like
Likes bob012345
oh, I have just noticed the word "FEM" that is not my field sorry
 
  • Like
Likes bob012345
I resolved how to do the calculations for this part;

$$ \int_X \frac{∂S_i}{∂x} \frac{∂ \tilde{T}}{ ∂x} \,dX dY$$

But am having conceptual issues with this part around the 2D element;
$$ \int_Y S_i \frac{∂ \tilde{T}}{ ∂x} \Big |_{x_1}^{x_2}$$

Any suggestions would be appreciated. Thanks.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K