MHB Solving a Logarithm Problem with Given Logs: Step-by-Step Guide

  • Thread starter Thread starter Alaba27
  • Start date Start date
  • Tags Tags
    Logarithm
Alaba27
Messages
18
Reaction score
0
If log[a]x=5 and log[a]y=8, solve:

log[a]((ax2)/(√y))-2

---------

I am completely lost. I've tried some ways of doing this question but I can't get past the second and third steps. This is one of the last questions in my homework and I do not have a step-by-step solutions manual, only the final answer which would be useless because I will have no idea how to get there. Can someone please give me a step-by-step solution? Please and thanks!
 
Mathematics news on Phys.org
Alaba27 said:
If log[a]x=5 and log[a]y=8, solve:

log[a]((ax2)/(√y))-2

---------

I am completely lost. I've tried some ways of doing this question but I can't get past the second and third steps. This is one of the last questions in my homework and I do not have a step-by-step solutions manual, only the final answer which would be useless because I will have no idea how to get there. Can someone please give me a step-by-step solution? Please and thanks!

Welcome to MHB, Alaba27! :)

There are a couple of calculation rules for logarithms.

In particular:
$$\log_a p^q = q \log_a p \\
\log_a pq = \log_a p + \log_a q \\
\log_a \frac p q = \log_a p - \log_a q \\
\sqrt{p} = p^{1/2}$$
Can you apply those?
 
You might need to use :

$$\log_a a = 1$$
 
I just don't understand how to use those formulas with this kind of the question. None of the other questions in my homework are in that format and it's extremely confusing. This is what it looks like.

View attachment 730
 

Attachments

  • a.png
    a.png
    1.5 KB · Views: 95
I got the solution! After multiple attempts and help from others I got this:

= (ax2/y1/2)-2
= (a-2[x2]-2)/([y1/2]-2
= (a-2x-4)/(y-1)
= y/a2x4

loga(y/a2x4) = -2[loga(a) + 2loga(x) – 1/2loga(y)]

= -2 -4loga(x) + loga(y)
= -2 – 4(5) + 8
= -2 – 20 + 8
= -14
 
Yes, good work! (Yes)

For the benefit of other students who may read this topic, I will write out a solution method using $\LaTeX$:

If $$\log_a(x)=5$$ and $$\log_a(y)=8$$, find the value of $$\log_a\left(\left(\frac{ax^2}{\sqrt{y}} \right)^{-2} \right)$$.

$$\log_a\left(\left(\frac{ax^2}{\sqrt{y}} \right)^{-2} \right)=-2\log_a\left(\frac{ax^2}{\sqrt{y}} \right)=$$

$$-2\left(\log_a(ax^2)-\log_a(\sqrt{y}) \right)=-2\left(\log_a(a)+\log_a(x^2)-\log_a(y^{\frac{1}{2}}) \right)=$$

$$-2\left(1+2\log_a(x)-\frac{1}{2}\log_a(y) \right)=-2\left(1+2\cdot5-\frac{1}{2}\cdot8 \right)=-2\left(1+10-4 \right)=-2(7)=-14$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
2K
Replies
15
Views
3K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
16
Views
3K
Replies
3
Views
2K
Back
Top