MHB Solving a Matrice Equation: AX=B

  • Thread starter Thread starter Petrus
  • Start date Start date
Petrus
Messages
702
Reaction score
0
Matrice equation

Hello MHB,
I am suposed to solve this matrice equation $$AX=B$$
$$A=
\left| {\begin{array}{cc} 1 & 2 & 1\\ 1 & 3 & 2\\ 1 & 6 & 6 \end{array} } \right|$$
$$X=
\left| {\begin{array}{cc} a & b \\ c & d \\ e & f \end{array} } \right|$$
$$B=
\left| {\begin{array}{cc} 1 & 10 \\ 2 & 40 \\ 3 & 60 \end{array} } \right|$$

Well I don't need to try do something I can se there will be no solution cause I will not be able to multiplication $$A^{-1}*B$$ cause there is not same row in A as columne in B so there will be no solution? I am correct?

Regards,
$$|\pi\rangle$$
 
Last edited:
Physics news on Phys.org
Re: Matrice equation

No problem with orders, they fit perfectly. Besides, $A$ is invertible so, $$AX=B\Leftrightarrow A^{-1}(AX)=A^{-1}B\Leftrightarrow (AA^{-1})X=A^{-1}B\Leftrightarrow IX=A^{-1}B\Leftrightarrow X=A^{-1}B$$ Now, $X=A^{-1}B=\ldots$
 
Re: Matrice equation

Fernando Revilla said:
No problem with orders, they fit perfectly. Besides, $A$ is invertible so, $$AX=B\Leftrightarrow A^{-1}(AX)=A^{-1}B\Leftrightarrow (AA^{-1})X=A^{-1}B\Leftrightarrow IX=A^{-1}B\Leftrightarrow X=A^{-1}B$$ Now, $X=A^{-1}B=\ldots$
Hello Fernando Revilla,
Thanks, I see what I did misinterpret.

Regards,
$$|\pi\rangle$$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K