Solving a nested logarithmic equation

AI Thread Summary
The discussion revolves around solving a nested logarithmic equation, leading to the solutions x = -1 and x = -2. While x = -1 is invalid due to resulting in a logarithm with base 1, x = -2 satisfies all conditions for positivity and is deemed a valid solution. The author of the original problem claims no solutions exist, which has led to confusion among participants. The consensus is that x = -2 is indeed a valid solution, contradicting the author's conclusion of an empty solution set. Clarification on the author's reasoning is sought, as it appears inconsistent with the derived solutions.
brotherbobby
Messages
749
Reaction score
169
Homework Statement
Solve for ##x## : ##\boldsymbol{\log_{x^2+x+1}\{\log_{2x^2+3x+5}(x^2+3)\}=0}##
Relevant Equations
1. Given ##\log_b a= x##, we have the requirements that (1) ##a>0##, (2) ##b>0\; \text{and}\; b\ne 1## and (3) that all ##a,b,x \in \mathbb{R}##
2. If ##\log_{f(x)} g(x) = 0\Rightarrow g(x) = 1\;\forall x##
3. If ##\log_{f(x)} g(x) = 1\Rightarrow g(x) = f(x)\;\forall x##
1679125464361.png
Problem statement :
Let me copy and paste the problem on the right as it appears in the text.

Solution : Using the Relevant Equations (2) and (3) above, we can claim that
\begin{align*}
&\log_{2x^2+3x+5}(x^2+3)=1\\
&\Rightarrow x^2+3 = 2x^2+3x+5\\
&\Rightarrow x^2+3x+2=0\\
&\Rightarrow (x+1)(x+2)=0\\
&\Rightarrow \underline{x = -1}\quad\text{OR}\quad \underline{x=-2}
&\end{align*}

We have three functions to consider for conditions satisfying positivity, as outlined in Relevant Equations (1) above, for the two (underlined) solutions just obtained.

1. ##x^2+3## : Both solutions satisfy this function being greater than zero.
2. ##2x^2+3x+5## : Likewise, both solutions satisfy the requirement of this "base" function for being greater than zero and not equal to one.
3. ##x^2+x+1## : For ##x=-1##, this function is one, which is invalid. Hence this solution has to be discarded. However, for ##x=-2## this function is greater than zero and not one; so this solution holds good.

Answer : ##\Large{\boxed{x = -2}}. ##

Issue : The author says no answer for ##x## satisfies the logarithmic equation, giving ##x=\varnothing##. I copy and paste his solution below :

1679127496536.png
Doubt : Is the author mistaken? Am I? A hint would be most welcome.
 
Last edited:
Physics news on Phys.org
Your answer looks fine to me. If x = -1, the outer log is base-1, which we can't have.
If x = -2, we have this:
##\log_{x^2 + x + 1}[\log_{2x^2 + 3x + 5}(x^2 + 3)] = \log_3[\log_7(7)] = \log_3(1) = 0##

I don't following the author's work at all, particularly where he writes ##x \in R## a couple of times, and then concludes that the solution set is empty.
 
Mark44 said:
Your answer looks fine to me. If x = -1, the outer log is base-1, which we can't have.
If x = -2, we have this:
##\log_{x^2 + x + 1}[\log_{2x^2 + 3x + 5}(x^2 + 3)] = \log_3[\log_7(7)] = \log_3(1) = 0##

I don't following the author's work at all, particularly where he writes ##x \in R## a couple of times, and then concludes that the solution set is empty.
Thank you. Yes I checked my answer too. Matches the conditions. Sorry about the text.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top