Solving a nested logarithmic equation

Click For Summary
SUMMARY

The nested logarithmic equation discussed is defined as log_{2x^2+3x+5}(x^2+3)=1. The solutions derived from the equation are x = -1 and x = -2. However, the solution x = -1 is invalid due to the logarithmic base being one, which is not permissible. The valid solution is x = -2, which satisfies all conditions for positivity and validity of the logarithmic functions involved.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with solving quadratic equations
  • Knowledge of conditions for logarithmic bases
  • Ability to analyze nested functions
NEXT STEPS
  • Study the properties of logarithmic functions and their domains
  • Learn about quadratic equations and their solutions
  • Explore conditions for valid logarithmic bases
  • Investigate nested logarithmic equations and their implications
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex logarithmic equations.

brotherbobby
Messages
756
Reaction score
170
Homework Statement
Solve for ##x## : ##\boldsymbol{\log_{x^2+x+1}\{\log_{2x^2+3x+5}(x^2+3)\}=0}##
Relevant Equations
1. Given ##\log_b a= x##, we have the requirements that (1) ##a>0##, (2) ##b>0\; \text{and}\; b\ne 1## and (3) that all ##a,b,x \in \mathbb{R}##
2. If ##\log_{f(x)} g(x) = 0\Rightarrow g(x) = 1\;\forall x##
3. If ##\log_{f(x)} g(x) = 1\Rightarrow g(x) = f(x)\;\forall x##
1679125464361.png
Problem statement :
Let me copy and paste the problem on the right as it appears in the text.

Solution : Using the Relevant Equations (2) and (3) above, we can claim that
\begin{align*}
&\log_{2x^2+3x+5}(x^2+3)=1\\
&\Rightarrow x^2+3 = 2x^2+3x+5\\
&\Rightarrow x^2+3x+2=0\\
&\Rightarrow (x+1)(x+2)=0\\
&\Rightarrow \underline{x = -1}\quad\text{OR}\quad \underline{x=-2}
&\end{align*}

We have three functions to consider for conditions satisfying positivity, as outlined in Relevant Equations (1) above, for the two (underlined) solutions just obtained.

1. ##x^2+3## : Both solutions satisfy this function being greater than zero.
2. ##2x^2+3x+5## : Likewise, both solutions satisfy the requirement of this "base" function for being greater than zero and not equal to one.
3. ##x^2+x+1## : For ##x=-1##, this function is one, which is invalid. Hence this solution has to be discarded. However, for ##x=-2## this function is greater than zero and not one; so this solution holds good.

Answer : ##\Large{\boxed{x = -2}}. ##

Issue : The author says no answer for ##x## satisfies the logarithmic equation, giving ##x=\varnothing##. I copy and paste his solution below :

1679127496536.png
Doubt : Is the author mistaken? Am I? A hint would be most welcome.
 
Last edited:
Physics news on Phys.org
Your answer looks fine to me. If x = -1, the outer log is base-1, which we can't have.
If x = -2, we have this:
##\log_{x^2 + x + 1}[\log_{2x^2 + 3x + 5}(x^2 + 3)] = \log_3[\log_7(7)] = \log_3(1) = 0##

I don't following the author's work at all, particularly where he writes ##x \in R## a couple of times, and then concludes that the solution set is empty.
 
  • Like
Likes   Reactions: scottdave
Mark44 said:
Your answer looks fine to me. If x = -1, the outer log is base-1, which we can't have.
If x = -2, we have this:
##\log_{x^2 + x + 1}[\log_{2x^2 + 3x + 5}(x^2 + 3)] = \log_3[\log_7(7)] = \log_3(1) = 0##

I don't following the author's work at all, particularly where he writes ##x \in R## a couple of times, and then concludes that the solution set is empty.
Thank you. Yes I checked my answer too. Matches the conditions. Sorry about the text.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K