Solving a Partial Differential Equation with the Characteristic Method

Click For Summary

Homework Help Overview

The discussion revolves around solving a partial differential equation (PDE) using the characteristic method. The original poster presents a PDE with initial conditions and expresses difficulty in progressing beyond the initial substitutions made for the variables involved.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants explore substitutions for the variables in the PDE and discuss the implications of these substitutions on the form of the solution. Questions arise regarding the integration of the resulting expressions and the validity of the proposed solutions in relation to the initial conditions.

Discussion Status

The discussion is ongoing, with participants providing insights and corrections regarding the integration of the PDE. Some guidance has been offered on interpreting the variables and their roles, but there is no explicit consensus on the final form of the solution.

Contextual Notes

Participants note the challenge posed by the initial conditions and the complexity introduced by the variables involved in the PDE. The original poster mentions a lack of familiarity with advanced techniques, which may influence the discussion's direction.

The Head
Messages
137
Reaction score
2
Homework Statement
u_x + x*u_y = (y-1/2x^2)^2, u(0,y) = e^y
Relevant Equations
du/dt = du/dx*dx/dt + du/dy*dy/dt
dx/dt =1, x(0,s)=0, dy/dt=x, y(0,s) = s, du/dt=(y-1/2x^2)^2, u(0,s)=e^s

I did well at the beginning to get x(t,s) =t and y(t,s)=1/2t^2 + s, but got stuck with the du/dt part.

You can sub in x=t and y=1/2t^2 +s for x and y to get du/dt = s^2. But that's still three variables, and I can't see any obvious substitutions.

This is a regular diffy Q course, so I don't have a lot of knowledge of advanced techniques, and this was just thrown in, so I'm a little unsure how to proceed.
 
Physics news on Phys.org
Also, I tried u=e^s => s=ln(u), so du/dt = (ln(u))^2, but that gives me an Ei function, so I feel like that can't be correct.
 
The Head said:
You can sub in x=t and y=1/2t^2 +s for x and y to get du/dt = s^2.

The expression
$$
\frac{\partial u}{\partial t} = s^2
$$
can be directly integrated, ##s## is the other coordinate - not an unknown to be solved for.

Edit: Missed the square in the original PDE.
 
Last edited:
  • Like
Likes   Reactions: The Head
Orodruin said:
The expression
$$
\frac{\partial u}{\partial t} = s^2
$$
can be directly integrated, ##s## is the other coordinate - not an unknown to be solved for.

Edit: Missed the square in the original PDE.

Ohh, OK gotcha. So it can just be s^2 * t = u(s,t)? Thanks so much for your reply.
 
The Head said:
Ohh, OK gotcha. So it can just be s^2 * t = u(s,t)? Thanks so much for your reply.
No, but almost. Your function does not satisfy the initial condition.
 
  • Like
Likes   Reactions: The Head
Orodruin said:
No, but almost. Your function does not satisfy the initial condition.
Right, of course! Thank you.
 

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K