Solving a Problem with Interchanging Field Tensors

AI Thread Summary
The discussion revolves around the interchangeability of covariant dual and normal covariant field tensors in a specific equation transition. There is uncertainty regarding the validity of moving from equation (29) to (30) due to the non-commutative nature of matrices. The participants clarify that while components can be interchanged in contractions, care must be taken with implicit metric tensors. Sign conventions for the Levi-Civita symbol are also emphasized as critical for accurate results. Overall, the conversation highlights the importance of understanding tensor operations and notation in deriving correct equations.
milkism
Messages
118
Reaction score
15
Homework Statement
Expressing the field tensor in terms of the four dimensional Levi-Civita symbol and covariant dual field tensor.
Relevant Equations
See solution.
Exercise:
a3717a9d9e8aec33a3a9c3aa409ab2ee.png

Solution:
a9f924951e53dd98a26863c66bfe9457.png

The result is correct, but I'm unsure about equation from 29 to 30 where right-hand side became just the covariant dual field tensor. I assumed that I could interchange the covariant dual- and normal covariant field tensor, but don't think it's possible since matrices aren't commutative.
I think I bruteforced to get the correct result.:cool::headbang::angel::eynman:

P.S: definition (20) is just the definition of the four-dimensional Levi-Civita symbol.
 
Physics news on Phys.org
You can interchange F and its dual in the conteaction. You're adding (products of) components, which commute. You don't multiply whole matrices.

Btw, you should then also worry about those implicit metric tensor "matrices" in the contraction of F with itself.
 
haushofer said:
You can interchange F and its dual in the conteaction. You're adding (products of) components, which commute. You don't multiply whole matrices.

Btw, you should then also worry about those implicit metric tensor "matrices" in the contraction of F with itself.
Wow, thx!
 
Just use Appendix A.4 in

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf

One must be very careful concerning the sign conventions, i.e., whether you have ##\epsilon^{\mu \nu \rho \sigma}## as the usual Levi-Civita symbol and then necessarily ##\epsilon_{\mu \nu \rho \sigma}=-\epsilon^{\mu \nu \rho \sigma}## or vice versa, when using different books/papers.
 
From
##
(29)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \color{blue}{F_{\kappa \lambda}} \tilde{F}_{\mu \nu} \color{blue}{F^{\kappa \lambda}}
##
which can be rewritten (using tensorial methods) as
##
(29)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu} \color{blue}{F_{\kappa \lambda}} \color{blue}{F^{\kappa \lambda}}
##inserting
##
(26)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}}=-2\left(B^2-\frac{E^2}{c^2}\right)
##

##
(25)\qquad \color{blue}{F_{\kappa \lambda} F^{\kappa \lambda}}=2\left(B^2-\frac{E^2}{c^2}\right)
##

you get

##
\color{red}{-2\left(B^2-\frac{E^2}{c^2}\right)} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu} \ \color{blue}{2\left(B^2-\frac{E^2}{c^2}\right)}
##

##
\color{red}{-1} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu}
##
which is equal to "minus Eq. (30)"
 
From the first post we have equation (27):
1681846955489.png
Here, the Einstein summation notation is being used, so the ##\kappa## and ##\lambda## on the right side are dummy summation indices.

Then we read
1681846982352.png
If the Einstein convention is still being assumed, then all the indices appearing in (28) are dummy summation indices.

The next step in post #1 is
1681847117472.png

Here, we have confusion. The ##\kappa## and ##\lambda## indices appear alone on the left side. So, these indices are not being summed on the left side. Going from left to right on the right side of (29), we know that the first two ##\kappa##'s are summation indices. But, the ##\kappa## in the last factor, ##F^{\kappa \lambda}##, is not suummed since this ##\kappa## corresponds to the ##\kappa## on the left side of the equation. The same remarks can be made for the ##\lambda##'s in (29).

Note that (29) can be written with less confusion as

$$\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu} F^{\kappa \lambda}= \frac 1 2 \epsilon^{\mu \nu \alpha \beta}F_{\alpha \beta} \tilde{F}_{\mu \nu} F^{\kappa \lambda} $$

Here, it is clear that ##\mu##, ##\nu##, ##\alpha##, and ##\beta## are summation indices while the ##\kappa## and ##\lambda## are fixed indices that are not summed. However, it doesn't appear to me that this equation is very helpful in getting to the result of expressing ##F^{\mu \nu}## in terms of ##\tilde{F}_{\mu \nu}## and the Levi-Civita tensor.

A better approach is to follow @vanhees71. Start with $$\tilde{F}^{\alpha \beta} = \frac 1 2 \epsilon^{\alpha \beta \kappa \lambda}F_{\kappa \lambda} $$ Raise and lower indices to write this as $$\tilde{F}_{\alpha \beta} = \frac 1 2 \epsilon_{\alpha \beta \kappa \lambda}F^{\kappa \lambda} $$ Multiply both sides by ##\epsilon^{\mu \nu \alpha \beta}## and sum over ##\alpha## and ##\beta##. $$\epsilon^{\mu \nu \alpha \beta} \tilde{F}_{\alpha \beta} = \frac 1 2 \epsilon^{\mu \nu \alpha \beta} \epsilon_{\alpha \beta \kappa \lambda}F^{\kappa \lambda} $$ Proceed by using identities (A.4.5) and (A.3.1) in the appendices of https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf. It is helpful to note that ##\epsilon_{\alpha \beta \kappa \lambda} = \epsilon_{ \kappa \lambda \alpha \beta}##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Back
Top