Solving a Quartic Polynomial with Symmetric Graph & Intercept -2

Click For Summary
SUMMARY

The discussion focuses on finding the equation of a quartic polynomial that is symmetric about the y-axis, has local maxima at (-2, 0) and (2, 0), and a y-intercept of -2. The polynomial is expressed as f(x) = ax^4 + bx^2 - 2, where the coefficients a and b need to be determined. The conditions for local extrema lead to two equations: 16a + 4b - 2 = 0 and 32a + 4b = 0, which can be solved to express b in terms of a, resulting in the general form f(x) = ax^4 - (16/3)ax^2 - 2.

PREREQUISITES
  • Understanding of quartic functions and their properties
  • Knowledge of calculus, specifically derivatives and local extrema
  • Familiarity with polynomial equations and their coefficients
  • Basic algebra for solving simultaneous equations
NEXT STEPS
  • Study the properties of even functions and their implications on symmetry
  • Learn how to derive and solve polynomial equations using calculus
  • Explore methods for finding local maxima and minima in polynomial functions
  • Investigate the relationship between coefficients and graph behavior in quartic polynomials
USEFUL FOR

Mathematics students, educators, and anyone interested in polynomial functions and calculus, particularly those focusing on quartic equations and their graphical properties.

takelgith
Messages
6
Reaction score
0
Find the equation of a quartic polynomial whose graph is symmetric about the y -axis and has local maxima at (−2,0) and (2,0) and a y -intercept of -2
 
Physics news on Phys.org
Where is the attempted work for this problem?
 
This is the attempted work for this. I don't know how to find a and b from this...

symmetric over the y-axis


f(x) is an even quartic function ...

f(x)=ax^4+bx^2+c
y-intercept = -2
⟹c=−2

f(x)=ax^4+bx^2−2

the local extrema info tells me two things...

f(x)=0

at
x=±2

f′(x)=4ax^3+2bx=0 at x=±2

From here how do I find a and b to finish the function...?

- - - Updated - - -

Cbarker1 said:
Where is the attempted work for this problem?

I just posted it as a reply to the forum
 
takelight said:
f(x)=ax^4+bx^2−2

.
.
.

f′(x)=4ax^3+2bx=0 at x=±2

From here how do I find a and b to finish the function...?
You know that $f(x)$ and $f'(x)$ are both $0$ at the points $(\pm2,0)$. This tells you that $$f(2) = 0:\qquad 16a + 4b - 2 = 0,$$ $$f'(2) = 0:\qquad 32a + 4b = 0.$$ There are your two equations for $a$ and $b$.
 
takelight said:
This is the attempted work for this. I don't know how to find a and b from this...

symmetric over the y-axis


f(x) is an even quartic function ...

f(x)=ax^4+bx^2+c
Yes, that's good. You want to find values of the three parameters, a, b, and c so you need three equations.
y-intercept = -2
⟹c=−2
Yes, a(0^4)+ b(0^2)+ c= c= -2 is one of the equations.

f(x)=ax^4+bx^2−2

the local extrema info tells me two things...

f(x)=0

at
x=±2

f′(x)=4ax^3+2bx=0 at x=±2

From here how do I find a and b to finish the function...?

- - - Updated - - -
I just posted it as a reply to the forum
The answer is, "you don't". Because this is an even functions, any local extremum at x= a necessarily corresponds to a
local extremum

at x= -a. Putting either x= 2 or x= -2 into the equation gives the same thing:
f'(2)= 4a(2^3)+ 3b(2)= 32a+ 6b= 0.
f'(-2)= 4a((-2)^3+ 3b(-3)= -32a- 6b= 0.

From 32a+ 6b= 0, we get b= -(32/6)a= -(16/3)a so the best we can say is that any function of the form f(x)= ax^4- (16/3)ax^2- 2 satisfies all of those conditions.
 
takelight said:
This is the attempted work for this. I don't know how to find a and b from this...

symmetric over the y-axis


f(x) is an even quartic function ...

f(x)=ax^4+bx^2+c
y-intercept = -2
⟹c=−2

f(x)=ax^4+bx^2−2

the local extrema info tells me two things...

f(x)=0

at
x=±2

f′(x)=4ax^3+2bx=0 at x=±2

From here how do I find a and b to finish the function...?

- - - Updated - - -
I just posted it as a reply to the forum

Help solving this?? - My Math Forum

:rolleyes:
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K