geoduck
- 257
- 2
Suppose you have the equation
x^2*(log x)^{1/3}=-C
for very small C. I have a book claims that asymptotically, for very small C, the solution is:
x^2=C*\frac{2}{[logC]^{1/3} }
I'm not quite sure how to show this. If the 2 wasn't there, it looks like what they did was:
x^2=-\frac{C}{(log x)^{1/3}}
and just substituted -C for x on the RHS:
x^2=\frac{C}{(log C)^{1/3}}
I was thinking maybe you could substitute -C for x2 instead to get:x^2=\frac{2^{1/3}C}{(log C)^{1/3}}
x^2*(log x)^{1/3}=-C
for very small C. I have a book claims that asymptotically, for very small C, the solution is:
x^2=C*\frac{2}{[logC]^{1/3} }
I'm not quite sure how to show this. If the 2 wasn't there, it looks like what they did was:
x^2=-\frac{C}{(log x)^{1/3}}
and just substituted -C for x on the RHS:
x^2=\frac{C}{(log C)^{1/3}}
I was thinking maybe you could substitute -C for x2 instead to get:x^2=\frac{2^{1/3}C}{(log C)^{1/3}}