Solving an ODE using shooting method

Click For Summary
The discussion focuses on solving a specific ordinary differential equation (ODE) using the shooting method, with boundary conditions specified. The problem was reformulated into a set of coupled ODEs, and the user seeks clarification on deriving a Taylor expansion to avoid singularity at x = 0. There is confusion regarding the numerical factors in the Taylor series expansion, particularly the discrepancy between 1/16 and 1/4. The user has also written code to solve the ODE but is encountering unexpected results and is seeking assistance from others in the forum. The conversation emphasizes the complexities of applying the shooting method and Taylor series in boundary value problems.
spaghetti3451
Messages
1,311
Reaction score
31
Hi, I am trying to solve the following ODE for my maths project:

## y'' = \frac{\alpha}{2}y^3 - \frac{3}{2}y^2 + y - \frac{3}{x} y'##

under the following boundary conditions:

## y'(0) = 0 ##
## y(x) \rightarrow y \_ \equiv 0\ \text{as}\ x \rightarrow \infty ##
As a first step, I converted this problem into a set of coupled ODEs:

## \frac{dy}{dx} = z##
## \frac{dz}{dx} = \frac{\alpha}{2}y^3 - \frac{3}{2}y^2 + y - \frac{3}{x} z##

under the following boundary conditions:

## z(0) = 0 ##
## y(x) \rightarrow y \_ \equiv 0\ \text{as}\ x \rightarrow \infty ##Next, my source tells me to use the shooting method to convert the BVP into an IVP, which means that I have to use two initial guesses of ## y(0) ## to be able to use the secant method to find the correct value of ## y(0) ##.

Now, my question is, according to my source, I can avoid the singularity at x = 0 using Taylor expansion as follows:

## y(r_{0}) = y_{0} + \frac{1}{16} r_{0}^{2} (2y_{0} - 3y_{0}^{2} + \alpha y_{0}^{3}) ##

I see how you can estimate ## y(r_{0}) ## where ## r_{0} ## is a tiny distance away from the origin, but I don't really see how they dervied this expression. Could anyone help me out?
 
Physics news on Phys.org
Just set y(0)'=0 and y(0)=y_0 in the original DE.
Then use this as your second derivative in your taylor series.

EDIT: Tried it myself, something weird is going on. The numerical factors come out different for me.
Maybe an error? I don't see where the factor of 1/16 comes from. It comes out as 1/4 for me.
 

Attachments

  • IMG_0319.JPG
    IMG_0319.JPG
    27.5 KB · Views: 537
Last edited:
Start out by representing y as a function of x at small values of y by y(x) = y(0)+bx2. Then

y' = 2bx
y''=2b

3y'/x = 6b

So ##8b=\frac{\alpha}{2}y(0)^3-\frac{3}{2}y(0)^2+y(0)##

So, ##y(r_0)=y(0)+br_0^2=y(0)+\frac{1}{8}r_0^2(\frac{\alpha}{2}y(0)^3-\frac{3}{2}y(0)^2+y(0))##

Chet
 
  • Like
Likes spaghetti3451
Thanks for the solution. I also came to the conclusion, but I used ## \frac{y''(0)}{2} ## in place of ## b ##. I have written the code that solves the ODE in my original post, but it's giving me unexpected results. I was wondering if anyone in Physics Forums might want to have a look at it.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
391
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K