MHB Solving Coefficant Matrices with Legendre Polynomials

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Matrices
ognik
Messages
626
Reaction score
2
Whenever a problem seems too easy, I assume I'm missing something :-)

This is in a section on Legendre polynomials ...

Given the series $ \alpha_0 + \alpha_2Cos^2\theta +\alpha_4C^4 +\alpha_6C^6 = a_0P_0 + a_2P_2 + a_4P_4 +a_6P_6 $ (abbreviating $Cos^n\theta$ to $C^n$)

Express both coefficients as col. matrices and find A, B such that $A\vec{\alpha}=\vec{a} $ and $ B\vec{a}=\vec{\alpha} $

I found, almost by inspection, that A was the diagonal matrix with elements $ P_0, \frac{P_0}{C^2}, \frac{P_4}{C^4}, \frac{P_6}{C^6} $, similarly B is diagonal with elements $ \frac{1}{P_0}, \frac{C^2}{P_2}, \frac{C^4}{P_4}, \frac{C^6}{P_6} $ (and $AB=I$) Please confirm/correct?
 
Physics news on Phys.org
Hi, people are normally so helpful here, so I figure when I don't get a reply I've done something wrong - if I have just let me know what please :-)
 
So my A is $ \begin{bmatrix}P_{0}&0&0&0 \\0&\frac{P_{2}}{C^2}&0&0 \\0&0&\frac{P_4}{C^4}&0\\0&0&0&\frac{P_6}{C^6} \end{bmatrix}$ , if someone can confirm/correct that, I'll be happy with the rest.

I could get an A with just entries in col 1, but I chose the diagonal matrices because it's more useful/important - also a basis for example?
 
Probably best if show the col. matrices I found.

So $ \vec{\alpha} =\left[1, C^2, C^4, C^6\right] $ and $ \vec{a} = \left[P_0, P_2, P_4, P_6\right] $

Any comments on these, or my matrix A?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K