MHB Solving Coefficant Matrices with Legendre Polynomials

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Matrices
ognik
Messages
626
Reaction score
2
Whenever a problem seems too easy, I assume I'm missing something :-)

This is in a section on Legendre polynomials ...

Given the series $ \alpha_0 + \alpha_2Cos^2\theta +\alpha_4C^4 +\alpha_6C^6 = a_0P_0 + a_2P_2 + a_4P_4 +a_6P_6 $ (abbreviating $Cos^n\theta$ to $C^n$)

Express both coefficients as col. matrices and find A, B such that $A\vec{\alpha}=\vec{a} $ and $ B\vec{a}=\vec{\alpha} $

I found, almost by inspection, that A was the diagonal matrix with elements $ P_0, \frac{P_0}{C^2}, \frac{P_4}{C^4}, \frac{P_6}{C^6} $, similarly B is diagonal with elements $ \frac{1}{P_0}, \frac{C^2}{P_2}, \frac{C^4}{P_4}, \frac{C^6}{P_6} $ (and $AB=I$) Please confirm/correct?
 
Physics news on Phys.org
Hi, people are normally so helpful here, so I figure when I don't get a reply I've done something wrong - if I have just let me know what please :-)
 
So my A is $ \begin{bmatrix}P_{0}&0&0&0 \\0&\frac{P_{2}}{C^2}&0&0 \\0&0&\frac{P_4}{C^4}&0\\0&0&0&\frac{P_6}{C^6} \end{bmatrix}$ , if someone can confirm/correct that, I'll be happy with the rest.

I could get an A with just entries in col 1, but I chose the diagonal matrices because it's more useful/important - also a basis for example?
 
Probably best if show the col. matrices I found.

So $ \vec{\alpha} =\left[1, C^2, C^4, C^6\right] $ and $ \vec{a} = \left[P_0, P_2, P_4, P_6\right] $

Any comments on these, or my matrix A?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top