Solving Cubic Polynomial: Prove Two Distinct Roots

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Polynomial
Click For Summary
SUMMARY

The cubic polynomial equation \(x^3+(p+q+r)x^2+(pq+qr+rp-s^2)x+t=0\) is proven to have at least two distinct roots under the condition that \(s \neq 0\). The discussion emphasizes the significance of the coefficients \(p, q, r, s, t\) being real numbers, which ensures the polynomial's behavior in the real number domain. The proof leverages properties of cubic functions and the discriminant to establish the existence of distinct roots.

PREREQUISITES
  • Understanding of cubic polynomial equations
  • Familiarity with the concept of roots and their multiplicity
  • Knowledge of the discriminant and its role in determining root characteristics
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of cubic functions and their graphs
  • Learn about the discriminant of polynomials and its implications for root behavior
  • Explore the Fundamental Theorem of Algebra for deeper insights into polynomial roots
  • Investigate numerical methods for finding roots of polynomials, such as Newton's method
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial equations and their properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p,\,q,\,r,\,s,\,t$ be any real numbers and $s\ne 0$.

Prove that the equation $x^3+(p+q+r)x^2+(pq+qr+rp-s^2)x+t=0$ has at least two distinct roots.
 
Mathematics news on Phys.org
anemone said:
Let $p,\,q,\,r,\,s,\,t$ be any real numbers and $s\ne 0$.

Prove that the equation $x^3+(p+q+r)x^2+(pq+qr+rp-s^2)x+t=0$ has at least two distinct roots.

let $P(x) = x^3 +(p+q+r)x^2 + (pq+qr+rp-s^2)x + t$
so $\dfrac{dP(x)}{dx} = 3x^2 + 2 (p+q+r) x + (pq+qr+rp-s^2)$
now discriminant
= $4(p+q+r)^2 - 12(pq+qr+rp-s^2)$
= $4(p^2+q^2+r^2 -pq - qr -rp + 3s^2)$
= $2((p-q)^2 + (q-r)^2+(r-p)^2 + 6s^2)$

now as s is not zero the discriminant is not zero or derivative does not have double root so P(x) cannot have 3 same roots hence it has at least 2 distinct roots
 
kaliprasad said:
let $P(x) = x^3 +(p+q+r)x^2 + (pq+qr+rp-s^2)x + t$
so $\dfrac{dP(x)}{dx} = 3x^2 + 2 (p+q+r) x + (pq+qr+rp-s^2)$
now discriminant
= $4(p+q+r)^2 - 12(pq+qr+rp-s^2)$
= $4(p^2+q^2+r^2 -pq - qr -rp + 3s^2)$
= $2((p-q)^2 + (q-r)^2+(r-p)^2 + 6s^2)$

now as s is not zero the discriminant is not zero or derivative does not have double root so P(x) cannot have 3 same roots hence it has at least 2 distinct roots

Very well done, kaliprasad! (Yes)

Thanks for participating!:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K