Petrus
- 702
- 0
Hello MHB,
This is an old exam.What real x satisfies equation $$4\cos^2(x)-4=6\cos(x)$$
Progress:
Subsitute $$u=\cos(x)$$ and I solve this equation
$$4u^2-6u-4=0 $$
$$u_1=-\frac{1}{2}$$ and $$u_2=2$$
so if we take arccos of them we get
$$x=\frac{3\pi}{2}+2k\pi$$ which agree with facit but they got also $$x=-\frac{3\pi}{2}+2k\pi$$ which I don't understand also how shall I know what $$x=\cos^{-1}(2)$$ is in exam? I am doing something wrong or..?
Regards,
$$|\pi\rangle$$
This is an old exam.What real x satisfies equation $$4\cos^2(x)-4=6\cos(x)$$
Progress:
Subsitute $$u=\cos(x)$$ and I solve this equation
$$4u^2-6u-4=0 $$
$$u_1=-\frac{1}{2}$$ and $$u_2=2$$
so if we take arccos of them we get
$$x=\frac{3\pi}{2}+2k\pi$$ which agree with facit but they got also $$x=-\frac{3\pi}{2}+2k\pi$$ which I don't understand also how shall I know what $$x=\cos^{-1}(2)$$ is in exam? I am doing something wrong or..?
Regards,
$$|\pi\rangle$$