MHB Solving Equation In The Set Of Natural Numbers

AI Thread Summary
The equation to solve is $(a^2+1)(b^2+1)+45=2(2a+1)(3b+1)$. By rewriting it, the equation simplifies to $(ab-6)^2 + (a-2)^2 + (b-3)^2 = 5. The only integer solutions for this equation are derived from the case where one of the squares equals zero, leading to either $ab=6$, $a=2$, or $b=3$. The valid pairs that satisfy the equation are $(2,2)$ and $(2,4)$. Thus, the solutions for natural numbers $a$ and $b$ are limited to these two pairs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the natural numbers $a$ and $b$ such that $(a^2+1)(b^2+1)+45=2(2a+1)(3b+1)$.
 
Mathematics news on Phys.org
anemone said:
Find all the natural numbers $a$ and $b$ such that $(a^2+1)(b^2+1)+45=2(2a+1)(3b+1)$.
[sp]
Rewriting the equation: $$a^2b^2 + a^2 + b^2 + 46 = 12ab + 4a + 6b + 2,$$ $$a^2b^2 -12ab + a^2 - 4a + b^2 - 6b = -44,$$ $$(ab-6)^2 + (a-2)^2 + (b-3)^2 = -44 + 36 + 4 + 9 = 5.$$ The only way to express $5$ as the sum of three squares of integers is $4+1+0$. Therefore one of the three squares in the sum $(ab-6)^2 + (a-2)^2 + (b-3)^2$ must be $0$. Taking the three cases in turn, we must have either $ab=6$ or $a=2$ or $b=3$.

If $a=2$ the equation can be satisfied by taking $b=2$ or $b=4$. The other two cases $ab=6$ and $b=3$ do not lead to integer solutions. Therefore the only solutions for $(a,b)$ are $(2,2)$ and $(2,4).$
[/sp]
 
Opalg said:
[sp]
Rewriting the equation: $$a^2b^2 + a^2 + b^2 + 46 = 12ab + 4a + 6b + 2,$$ $$a^2b^2 -12ab + a^2 - 4a + b^2 - 6b = -44,$$ $$(ab-6)^2 + (a-2)^2 + (b-3)^2 = -44 + 36 + 4 + 9 = 5.$$ The only way to express $5$ as the sum of three squares of integers is $4+1+0$. Therefore one of the three squares in the sum $(ab-6)^2 + (a-2)^2 + (b-3)^2$ must be $0$. Taking the three cases in turn, we must have either $ab=6$ or $a=2$ or $b=3$.

If $a=2$ the equation can be satisfied by taking $b=2$ or $b=4$. The other two cases $ab=6$ and $b=3$ do not lead to integer solutions. Therefore the only solutions for $(a,b)$ are $(2,2)$ and $(2,4).$
[/sp]

Very well done, Opalg! And thanks for participating!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
2K
Replies
13
Views
4K
Replies
5
Views
3K
Replies
7
Views
1K
Replies
7
Views
2K
Replies
6
Views
4K
Back
Top