MHB Solving equation involving permutation and combination

AI Thread Summary
The discussion revolves around solving the equation P(n, 3) = 6 C(n, 5). The initial attempt included an error in the equation, which was later corrected. After cross-multiplying and simplifying, the equation leads to n^2 - 7n - 8 = 0. Factoring this gives the solutions n = -1 and n = 8, with only n = 8 being valid in the context of permutations and combinations. The thread emphasizes the importance of careful algebraic manipulation in solving such problems.
NotaMathPerson
Messages
82
Reaction score
0
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed
 
Mathematics news on Phys.org
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed

First, you have an error on the right hand side. After you fix that, try dividing both sides by $$n!$$, Think about what a factorial is.
 
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed
\begin{array}{ccc}\text{We have:} &amp; \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\<br /> \text{Cross-multiply:} &amp; 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\<br /> \text{Divide by 6n!:} &amp; 20(n-5)! \;=\;(n-3)! \\ \\<br /> \text{We have:} &amp; 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\<br /> \text{Divide by }(n-5)! &amp; 20 \;=\;(n-3)(n-4) \\ \\<br /> \text{Simplify:} &amp; n^2 - 7n - 8 \;=\;0 \\ \\<br /> \text{Factor:} &amp; (n+1)(n-8) \;=\;0 \\ \\<br /> \text{Solve:} &amp; n=\cancel{-1}.\;8<br /> \end{array}
 
soroban said:
\begin{array}{ccc}\text{We have:} &amp; \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\<br /> \text{Cross-multiply:} &amp; 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\<br /> \text{Divide by 6n!:} &amp; 20(n-5)! \;=\;(n-3)! \\ \\<br /> \text{We have:} &amp; 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\<br /> \text{Divide by }(n-5)! &amp; 20 \;=\;(n-3)(n-4) \\ \\<br /> \text{Simplify:} &amp; n^2 - 7n - 8 \;=\;0 \\ \\<br /> \text{Factor:} &amp; (n+1)(n-8) \;=\;0 \\ \\<br /> \text{Solve:} &amp; n=\cancel{-1}.\;8<br /> \end{array}
As http://mathhelpboards.com/members/mrtwhs/ pointed out there is a typo on the first line. It is fixed on the second line.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top