Solving equation involving permutation and combination

Click For Summary
SUMMARY

The equation P(n, 3) = 6 C(n, 5) can be solved by manipulating factorial expressions. The correct approach involves cross-multiplying and simplifying the equation to derive n^2 - 7n - 8 = 0. Factoring this quadratic equation yields the solutions n = 8 and n = -1, with n = 8 being the valid solution in the context of permutations and combinations. The discussion highlights the importance of careful notation and the correct application of factorial properties.

PREREQUISITES
  • Understanding of permutations (P(n, k)) and combinations (C(n, k))
  • Familiarity with factorial notation and operations
  • Basic algebra skills for solving quadratic equations
  • Ability to manipulate and simplify algebraic expressions
NEXT STEPS
  • Study the properties of permutations and combinations in depth
  • Learn how to solve quadratic equations using various methods
  • Explore advanced topics in combinatorial mathematics
  • Practice problems involving factorials and their applications in combinatorial contexts
USEFUL FOR

Mathematics students, educators, and anyone interested in combinatorial problem-solving techniques.

NotaMathPerson
Messages
82
Reaction score
0
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed
 
Mathematics news on Phys.org
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed

First, you have an error on the right hand side. After you fix that, try dividing both sides by $$n!$$, Think about what a factorial is.
 
NotaMathPerson said:
Find n if P(n, 3) = 6 C(n, 5).

My attempt

$\frac{n!}{(n-3)!}=6\frac{n!}{(n-5)5!}$

I don't know how to proceed
\begin{array}{ccc}\text{We have:} &amp; \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\<br /> \text{Cross-multiply:} &amp; 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\<br /> \text{Divide by 6n!:} &amp; 20(n-5)! \;=\;(n-3)! \\ \\<br /> \text{We have:} &amp; 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\<br /> \text{Divide by }(n-5)! &amp; 20 \;=\;(n-3)(n-4) \\ \\<br /> \text{Simplify:} &amp; n^2 - 7n - 8 \;=\;0 \\ \\<br /> \text{Factor:} &amp; (n+1)(n-8) \;=\;0 \\ \\<br /> \text{Solve:} &amp; n=\cancel{-1}.\;8<br /> \end{array}
 
soroban said:
\begin{array}{ccc}\text{We have:} &amp; \dfrac{n!}{(n-3)!}\;=\; 6\dfrac{n!}{(n-5)5!}\\ \\<br /> \text{Cross-multiply:} &amp; 5!\,n!\,(n-5)! \;=\;6\,n!\,(n-3)! \\ \\<br /> \text{Divide by 6n!:} &amp; 20(n-5)! \;=\;(n-3)! \\ \\<br /> \text{We have:} &amp; 20(n-5)! \;=\;(n-3)(n-4)(n-5)! \\ \\<br /> \text{Divide by }(n-5)! &amp; 20 \;=\;(n-3)(n-4) \\ \\<br /> \text{Simplify:} &amp; n^2 - 7n - 8 \;=\;0 \\ \\<br /> \text{Factor:} &amp; (n+1)(n-8) \;=\;0 \\ \\<br /> \text{Solve:} &amp; n=\cancel{-1}.\;8<br /> \end{array}
As http://mathhelpboards.com/members/mrtwhs/ pointed out there is a typo on the first line. It is fixed on the second line.

-Dan
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K