Solving Equation with Second Derivative

Click For Summary
SUMMARY

The discussion centers on solving the equation \(\frac{d^2x}{dy^2} = x^{-2}\) without using differential functions. Participants suggest using quadrature and transforming the second-order differential equation into a first-order separable equation. The final solution involves integrating to find \(v = \frac{dx}{dy} = 2\sqrt{C - x^{-1}}\), leading to the equation \(\frac{dx}{\sqrt{C - x^{-1}}} = 2dy\). The conversation emphasizes the importance of initial conditions and the clarity of the solution process.

PREREQUISITES
  • Understanding of second-order differential equations
  • Familiarity with first-order separable equations
  • Knowledge of quadrature methods in calculus
  • Basic skills in using computational tools like Wolfram Alpha
NEXT STEPS
  • Study the method of quadrature for solving differential equations
  • Learn about first-order separable equations and their applications
  • Explore the use of initial conditions in solving differential equations
  • Practice using Wolfram Alpha for complex mathematical problems
USEFUL FOR

Students and educators in mathematics, particularly those focusing on differential equations, as well as anyone interested in computational methods for solving complex equations.

Swimmingly!
Messages
43
Reaction score
0

Homework Statement


Solve the following equation for x(y). (use no differential functions)

dy^{2}.gif


x(0)' and x(0) are known.

Homework Equations



dy^{2}.gif

The Attempt at a Solution


I'm a bit unsure as to what to do next but I can easily make a messy formula up to approximate the result.

2%20\\%20x(y+E)%27\approx%20x(y)%27+%20x(y)%27%27\times%20E%20\end{matrix}\right.gif


k1 and k2 are a constant value.
The bigger E is, the bigger the error. For an infinite recursive use of this formula with an infinitesimal E the right result would be achieved. I don't know what it converges to though.

Any help for this problem or/and similar problems would be great. Thank you.
 
Last edited:
Physics news on Phys.org
What does "use no differential functions" mean?

[strike]Why don't you just integrate the whole thing twice, or separate variables?[/strike]

[edit]It was a bit more complex than I thought - never mind the second line there[/edit]
 
Last edited:
Hi,
the equation does not contain explicit dependency on y, so try multiplying both sides on dx/dy. You'll get a sort of "conservation of energy" for the problem:
(dx/dy)^2/2 + 1/x = const
const depends on the initial conditions. This way you are left with solving 1st order diff equation
 
CompuChip:
It means that I want something with which I can calculate values directly. I do not want Integrals or Derivatives in my final formula and I think this is very much possible.quZz:
I'm not sure what you mean by explicit but for a given k1, k2 and y there's a single well defined value of x.
Also I'm sorry I'm not very good at handling differentials, I don't even have much practice with calculus. I don't understand how you got that from multiplying the first equation by dx/dy. (assuming that was what you did?)
 
Last edited:
so you just need an answer, right?
 
quZz said:
so you just need an answer, right?
I've had my time for solving it alone for fun. But it doesn't look so simple and I am extremely curious as for the answer.

So, yes please.
I'm trying to find an answer but with the proof too. Otherwise I'll just forget it because I won't understand it.
If you could do that, it'd be really nice. Thanks.
 
try wolframalpha.com...
http://www.wolframalpha.com/input/?_=1325716343605&i=d^2x%2fdy^2%3d-1%2fx^2&fp=1&incTime=true
 
Your equation is
\frac{d^2x}{dy^2}= x^{-2}
As quZz said, y does not appear explictly so you can use "quadrature". let v= dx/dy. Then
\frac{d^2x}{dy^2}= \frac{dv}{dy}= \frac{dv}{dx}\frac{dx}{dy}= v\frac{dv}{dx}= x^{-2}

That is now a separable first order equation:
v dv= x^{-2}dx
\frac{1}{2}v^2= -x^{-1}+ C

v^2= 2(C- x^{-1})
v= \frac{dx}{dy}= 2\sqrt{C- x^{-1}}
which is also a separable first order equation:
\frac{dx}{\sqrt{C- x^{-1}}}= 2dy
 
Thanks!
I didn't know how to write second derivatives in Wolfram Alpha and I thought it wouldn't give a proof for such a complex problem.

Anyway thanks a lot. Problem solved.

Edit: There's a slight mistake on the your result by the way, v^2=2*(C-x^-1). It's times 2, not times "2 squared". It was much easier to follow then wolfram though. Thanks.
 
Last edited:

Similar threads

Replies
7
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
7
Views
2K
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K