Solving Equations With Modulos

  • Thread starter Thread starter madness
  • Start date Start date
  • Tags Tags
    Solving equations
Click For Summary
The discussion focuses on solving equations of the form a + bx = mod(c + dx, m), emphasizing the transition from a custom notation to conventional mathematical notation. It highlights that every solution must satisfy the condition 0 = mod(c - a + (d - b)x, m) and discusses the implications of treating x as a real number rather than an integer. Participants clarify that while addition is a group operation, the method of addition in modular arithmetic must be correctly applied. The conversation concludes with the identification of a general solution format, x = f/g + k*m/g, under the constraint 0 <= a + bx < m. Overall, the thread seeks to clarify and establish methods for solving modular equations effectively.
madness
Messages
813
Reaction score
69
Are there general methods for solving equations of the form

a+bx = mod(c+dx, m),

where, in the notation I have made up here, mod is the modulo function which resets the argument to zero when it reaches m. I hope it's clear what I mean here.
 
Mathematics news on Phys.org
Every solution of that equation will also satisfy 0 = mod(c-a+(d-b)x, m), or, in a more conventional notation, f=g x mod m where f=a-c and g=d-b. This is a simple modular equation, and general methods to find all solutions exist.
All solutions which satisfy 0<=a+bx<m are solutions to your initial equation.
 
I don't quite follow. When you switch from my made up notation to the real notation (sorry about that), it looks like a completely new equation. Unless you moved terms to the other side, which I didn't think was allowed. I could get a better idea of the solution by considering:

mod(x,n) = x- n*floor(x/n)

so that for my equations:

a+bx = c+dx - m*floor((c+dx)/m)

But what are the general methods for finding the solutions here? I should be clear here that I'm considering x as a real number and not necessarily and integer here.
 
Last edited:
Unless you moved terms to the other side, which I didn't think was allowed.
It is.

0 = mod(c-a+(d-b)x, m)
switch notation
0 = c-a+(d-b)x mod m
add a-c (for mathematical details: you can do this as addition is a group in Z/nZ, and it works for non-integer values as well)
a-c = (d-b)x mod m

Note that "mod m" refers to the whole equation in mathematics. It is used differently in programming languages.

I should be clear here that I'm considering x as a real number and not necessarily and integer here.
No, this is not clear, and really unexpected in modular expressions. It is not a problem, however: it might change the general methods to solve f=gx mod m, but it does not change the other parts.
 
mfb said:
It is.

0 = mod(c-a+(d-b)x, m)
switch notation
0 = c-a+(d-b)x mod m
add a-c (for mathematical details: you can do this as addition is a group in Z/nZ, and it works for non-integer values as well)
a-c = (d-b)x mod m

Addition is a group, but the addition operation follows the rule

add(x,y) = x+y-m*floor((x+y)/m),

which you didn't follow. Is this not the case?

No, this is not clear, and really unexpected in modular expressions. It is not a problem, however: it might change the general methods to solve f=gx mod m, but it does not change the other parts.

Well it should be pretty clear now that I've stated it explicitly. I'm working on a specific scientific problem and don't have the luxury of choosing all of the details of the problem.
 
madness said:
Addition is a group, but the addition operation follows the rule

add(x,y) = x+y-m*floor((x+y)/m),

which you didn't follow. Is this not the case?
My steps follow the calculation mod m, the expression via division and floor is not useful here.
 
Ok I'm starting to see where you're coming from now. However, I still don't know what these general methods you talk about are. Could you point me towards an explanation of the methods involved?

Edit: So x = f/g + k*m/g is the general solution for some integer k? Plus the constraint that 0<=a+bx<m.
 
Last edited:
Looks correct.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K