Solving First Order Diff Eq: y^2 = x^2 + cx^3?

Knissp
Messages
72
Reaction score
0

Homework Statement



dy/dx = (2x + y - 1)^2


Homework Equations





The Attempt at a Solution



Let u = 2x + y
du = 2 + dy/dx
dy/dx = du/dx - 2

dy/dx = (2x + y - 1)^2
so du/dx - 2 = (u-1)^2
du/dx = (u-1)^2 + 2
du / ((u-1)^2 + 2) = dx

1/sqrt(2) * arctan ((u-1)/sqrt(2)) = x + c

1/sqrt(2) * arctan ((2x + y -1)/sqrt(2)) = x + c

y = sqrt(2) * tan(sqrt(2) * x + C) + 1 - 2x

BUT the answer in the back of the textbook is y^2 = x^2 + cx^3. Did I mess up or is it a typo? Thank you.
 
Physics news on Phys.org
You have two answers. Check them to see if they satisfy dy/dx = (2x + y - 1)^2. If you find that your answer satisfies this DE, that's pretty good evidence that the book's answer is wrong. I don't see anything obviously wrong with your work.
 
Cool thanks my solution worked.
 
If you feel really ambitious, you could check the book's solution. Sometimes with differential equations it's possible to get what look like completely different solutions, but they both work. The key is that they differ by a constant.

As an example, sin^2(x) and -cos^2(x) look to be very different, but differ only by a constant.
 
Yep the book's sol'n sure doesn't work. Thanks for the help! :)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top