MHB Solving for $E(x)$ when X is a Fair Die Toss

  • Thread starter Thread starter dfraser
  • Start date Start date
dfraser
Messages
4
Reaction score
0
I'm given that: X is the random variable for the number of times a fair die is tossed before a six appears, and asked for E(x).

I know the solution is 5 but am struggling to understand how I'm meant to get there. I understand:

$$E(x) = \sum_{x=0}^{\infty} x\cdot p(x)\ $$
$$= \sum_{x=0}^{\infty} x \cdot (1/6) \cdot (5/6)^x $$
$$= 5/6 \cdot 1/6 \cdot\sum_{x=1}^{\infty} x \cdot (5/6)^{x-1} $$

but am then given that:

$$= \frac{5/6 \cdot 1/6}{{(1-5/6)}^{2}} =5 $$

I recognize the numerator, and know the formula for the infinite sum of a geometric series is $$\frac{a}{1-r}$$ but I don't know how to get the denominator from the prior step or why it is squared. I think this is an easy mistake, but I can't seem to find it. Can anyone help me here?
 
Mathematics news on Phys.org
\[
\sum_{n=1}^\infty nx^{n-1}= \sum_{n=1}^\infty \left(x^n\right)' =\sum_{n=0}^\infty \left(x^n\right)' \overset{(*)}{=}\left(\sum_{n=0}^\infty x^n\right)' =\left(\frac{1}{1-x}\right)' =\frac{1}{(1-x)^2}.
\]
The equality (*) holds for $x$ in the interval of convergence of the right-hand side, i.e., for $|x|<1$.
 
dfraser said:
I'm given that: X is the random variable for the number of times a fair die is tossed before a six appears, and asked for E(x).

I know the solution is 5 but am struggling to understand how I'm meant to get there. I understand:

$$E(x) = \sum_{x=0}^{\infty} x\cdot p(x)\ $$
$$= \sum_{x=0}^{\infty} x \cdot (1/6) \cdot (5/6)^x $$
$$= 5/6 \cdot 1/6 \cdot\sum_{x=1}^{\infty} x \cdot (5/6)^{x-1} $$

but am then given that:

$$= \frac{5/6 \cdot 1/6}{{(1-5/6)}^{2}} =5 $$

I recognize the numerator, and know the formula for the infinite sum of a geometric series is $$\frac{a}{1-r}$$ but I don't know how to get the denominator from the prior step or why it is squared. I think this is an easy mistake, but I can't seem to find it. Can anyone help me here?

Hi dfraser! Welcome to MHB! :)Let's define:
$$f(y) = \sum_{n=1}^\infty ny^{n-1}$$
Then:
$$\int f(y) = \sum_{n=1}^\infty y^n + C_1 = \sum_{n=0}^\infty y^n + C_2 = \frac 1{1-y} + C_2$$
Taking the derivative, we get:
$$f(y) = \sum_{n=1}^\infty ny^{n-1} = \frac 1{(1-y)^2} \tag{1}$$When we apply $(1)$ to your formula, then:
$$E(x)
= \frac 56 \cdot \frac 16 \cdot\sum_{x=1}^{\infty} x \cdot \left(\frac{5}{6}\right)^{\!{x-1}}
= \frac 56 \cdot \frac 16 \cdot \frac 1 {(1 - \frac 56)^2}$$Edit: for some reason I completely missed Evgeny's response. Ah well.
 
The infinite series approach is fine, but here is another way for the sake of variety: condition on the result of the first throw. Let's say E is the expected number of throws before throwing a 6.

With probability 1/6, you will throw a 6 on the first throw. In this case the number of throws before a 6 is 0.

With probability 5/6, you throw something else (not a 6). You are now in the same state you were in before the first throw, but since you have taken one throw, the total number of throws expected before you get a 6 is E+1.

So $E = (1/6) \; 0 + (5/6) \;(E+1)$. Solve for E.
 
Thanks everyone, I understand now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
975
Replies
1
Views
2K
Replies
14
Views
2K
Replies
7
Views
1K
Replies
4
Views
1K
Replies
4
Views
1K
Back
Top