MHB Solving for $F(v,f)$ in Tensor $F$

  • Thread starter Thread starter smile1
  • Start date Start date
  • Tags Tags
    Tensor
smile1
Messages
18
Reaction score
0
Hello everyone

Here is the problem:

Find the value $F(v,f)$ of the tensor $F=e^1\otimes e_2 +e^2\otimes(e_1+3e_3)\in T^1_1(V)$ where $v=e_1+5e_2+4e_3, f=e^1+e^2+e^3$

Does $e^1\otimes e_2=0$ in this problem?Thanks
 
Physics news on Phys.org
I wouldn't think so, it seems to me that $e^1 \otimes e_2$ corresponds to the matrix:

$E_{12} = \begin{bmatrix}0&1&0\\0&0&0\\0&0&0 \end{bmatrix}$

which is not the 0-matrix.

That is, that:

$e^i \otimes e_j (v,u^{\ast}) = u^TE_{ij}v $, a scalar in the underlying field.
 
Deveno said:
I wouldn't think so, it seems to me that $e^1 \otimes e_2$ corresponds to the matrix:

$E_{12} = \begin{bmatrix}0&1&0\\0&0&0\\0&0&0 \end{bmatrix}$

which is not the 0-matrix.

That is, that:

$e^i \otimes e_j (v,u^{\ast}) = u^TE_{ij}v $, a scalar in the underlying field.

Got it, thanks a lot:)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top