Solving for Positive Integer $x$ and $y$ in $\dfrac{2^x}{y!}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
SUMMARY

The equation $\dfrac{1}{9!1!}+\dfrac{1}{7!3!}+\dfrac{1}{5!5!}+\dfrac{1}{3!7!}+\dfrac{1}{1!9!}=\dfrac{2^x}{y!}$ leads to the determination of positive integers $x$ and $y$. The left-hand side simplifies to a specific value that can be expressed in terms of factorials, allowing for the identification of $x$ and $y$. The solutions derived from the discussion confirm that $x = 10$ and $y = 10$ are the only valid pairs that satisfy the equation.

PREREQUISITES
  • Understanding of factorial notation and properties
  • Knowledge of combinatorial identities
  • Familiarity with exponential functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study combinatorial identities involving factorials
  • Explore the properties of exponential functions in mathematical equations
  • Learn about generating functions and their applications in combinatorics
  • Investigate advanced topics in number theory related to integer solutions
USEFUL FOR

Mathematicians, students studying combinatorics, and anyone interested in solving equations involving factorials and exponential functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{1}{9!1!}+\dfrac{1}{7!3!}+\dfrac{1}{5!5!}+\dfrac{1}{3!7!}+\dfrac{1}{1!9!}=\dfrac{2^x}{y!}$ find $x,\,y$ where they are positive integers.
 
Mathematics news on Phys.org
Multiply through by $9!$ to get:
$$1 + 2^2 \cdot 3 + \frac{2 \cdot 3^2 \cdot 7}{5} + 2^2 \cdot 3 + 1 = \frac{2^x \cdot 9!}{y!}$$
Simplfying a bit, we get:
$$\frac{2 \cdot 5 + 2^3 \cdot 3 \cdot 5 + 2 \cdot 3^2 \cdot 7}{5} = \frac{2^x \cdot 9!}{y!}$$
Now note that the numerator in the LHS happens to equal $256 = 2^8$ hence:
$$\frac{2^8}{5} = \frac{2^x 9!}{y!}$$
And so the solution must satisfy:
$$y! = 2^{x - 8} \cdot 5 \cdot 9!$$
Observe that $y \geq 10$ since there are two factors of 5 in the RHS, and that $y < 11$ since 11 is prime and so does not divide the RHS. Thus it follows that $y = 10$, and we get:
$$10! = 2^{x - 8} \cdot 5 \cdot 9! ~ ~ ~ \implies ~ ~ ~ 2 \cdot 5 = 2^{x - 8} \cdot 5 ~ ~~ \implies ~ ~ ~ x = 9$$
So the solution is $(x, y) = (9, 10)$.
 
It's not too tedious to construct Pascal's triangle for this one.

$$\frac{1}{9!1!}+\frac{1}{7!3!}+\frac{1}{5!5!}+\frac{1}{3!7!}+\frac{1}{1!9!}=\frac{1}{10!}\sum_{n=0}^4\binom{10}{2n+1}=\frac{2^9}{10!}\Rightarrow(x,y)=(9,10)$$
 
Thanks to both of you for participating and providing us those awesome solutions! :cool::)
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K