MHB Solving for Positive Integer $x$ and $y$ in $\dfrac{2^x}{y!}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
The equation involves summing fractions of factorials, specifically $\dfrac{1}{9!1!}+\dfrac{1}{7!3!}+\dfrac{1}{5!5!}+\dfrac{1}{3!7!}+\dfrac{1}{1!9!}$, and equating it to $\dfrac{2^x}{y!}$ to find positive integers $x$ and $y$. The discussion highlights the need to simplify the left side to express it in the form of $\dfrac{2^x}{y!}$. Participants contributed various methods and solutions to arrive at the values of $x$ and $y$. The collaborative effort emphasizes the importance of factorial manipulation and combinatorial identities in solving such equations. Ultimately, the goal is to determine the specific positive integer values for $x$ and $y$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{1}{9!1!}+\dfrac{1}{7!3!}+\dfrac{1}{5!5!}+\dfrac{1}{3!7!}+\dfrac{1}{1!9!}=\dfrac{2^x}{y!}$ find $x,\,y$ where they are positive integers.
 
Mathematics news on Phys.org
Multiply through by $9!$ to get:
$$1 + 2^2 \cdot 3 + \frac{2 \cdot 3^2 \cdot 7}{5} + 2^2 \cdot 3 + 1 = \frac{2^x \cdot 9!}{y!}$$
Simplfying a bit, we get:
$$\frac{2 \cdot 5 + 2^3 \cdot 3 \cdot 5 + 2 \cdot 3^2 \cdot 7}{5} = \frac{2^x \cdot 9!}{y!}$$
Now note that the numerator in the LHS happens to equal $256 = 2^8$ hence:
$$\frac{2^8}{5} = \frac{2^x 9!}{y!}$$
And so the solution must satisfy:
$$y! = 2^{x - 8} \cdot 5 \cdot 9!$$
Observe that $y \geq 10$ since there are two factors of 5 in the RHS, and that $y < 11$ since 11 is prime and so does not divide the RHS. Thus it follows that $y = 10$, and we get:
$$10! = 2^{x - 8} \cdot 5 \cdot 9! ~ ~ ~ \implies ~ ~ ~ 2 \cdot 5 = 2^{x - 8} \cdot 5 ~ ~~ \implies ~ ~ ~ x = 9$$
So the solution is $(x, y) = (9, 10)$.
 
It's not too tedious to construct Pascal's triangle for this one.

$$\frac{1}{9!1!}+\frac{1}{7!3!}+\frac{1}{5!5!}+\frac{1}{3!7!}+\frac{1}{1!9!}=\frac{1}{10!}\sum_{n=0}^4\binom{10}{2n+1}=\frac{2^9}{10!}\Rightarrow(x,y)=(9,10)$$
 
Thanks to both of you for participating and providing us those awesome solutions! :cool::)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K