Solving for time in a hyperbolic trajectory

Click For Summary
SUMMARY

The elapsed time interval $\Delta t$ for a spacecraft on a hyperbolic orbit with a semi-major axis of $a = -35000$ km and an eccentricity of $e = 1.2$, transitioning from a true anomaly of $\nu_0 = 20^{\circ}$ to $\nu = 103^{\circ}$, is calculated to be approximately 4.15 days. The solution involves determining the eccentric anomalies $F$ and $F_0$ using the equations for hyperbolic anomalies, and subsequently calculating the mean anomalies $M_F$ and $M_{F_0}$. The final time difference is derived from the absolute values of $t$ and $t_0$, confirming the correctness of the solution.

PREREQUISITES
  • Understanding of hyperbolic trajectories in orbital mechanics
  • Familiarity with eccentric and mean anomalies
  • Knowledge of Kepler's laws of planetary motion
  • Basic proficiency in mathematical functions such as hyperbolic sine and inverse tangent
NEXT STEPS
  • Study the derivation and application of hyperbolic anomalies in orbital mechanics
  • Learn about the implications of Kepler's third law for hyperbolic orbits
  • Explore numerical methods for solving orbital mechanics problems
  • Investigate the differences between elliptical and hyperbolic trajectories
USEFUL FOR

Aerospace engineers, astrophysicists, and students of orbital mechanics will benefit from this discussion, particularly those involved in trajectory analysis and spacecraft navigation.

Dustinsfl
Messages
2,217
Reaction score
5
A spacecraft is on a hyperbolic orbit relative to the Earth with $a = -35000$ km and an eccentricity of $e = 1.2$.
At some initial time $t_0$, the spacecraft is at a true anomaly of $\nu_0 = 20^{\circ}$.
At some later time $t$, the true anomaly is $\nu = 103^{\circ}$.
What is the elapsed time interval $\Delta t$ between these two positions?

This solution is wrong. The answer should be around an hour. How else can I do this?

Since we are dealing with hyperbolic trajectories, our equations for the eccentric hyperbolic anomaly are
\begin{alignat*}{3}
M_{\text{h}} & = & \frac{\mu_{earth}}{h^3}(e^2 - 1)^{3/2}t\\
M_{\text{h}} & = & e\sinh(F) - F
\end{alignat*}
Therefore, we need the eccentric anomalies $F$ and $F_0$.
\begin{alignat*}{3}
F & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu}{2}\right)\right]\\
& = & 41.51866^{\circ}\\
F_0 & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu_0}{2}\right)\right]\\
& = & 6.08648^{\circ}
\end{alignat*}
Since we don't know $h$ explicitly, we can solve for $h$,
$$
h = \sqrt{a\cdot\mu_{earth}\cdot(1 - e^2)}.
$$
Next, we need to find the eccentric anomaly for $F_0$ and $F$.
\begin{alignat*}{3}
M_{F_0} & = & e\sinh(F_0) - F_0\\
& = & -5.95877^{\circ}\\
M_{F} & = & e\sinh(F_0) - F_0\\
& = & -40.5709^{\circ}\\
\end{alignat*}
Finally, we can solve for the time and take the difference to obtain $\Delta t$.
\begin{alignat*}{3}
t & = & M_F\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -420773\text{ s}\\
t_0 & = & M_{F_0}\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -61800.2\text{ s}
\end{alignat*}
Since time isn't negative, we simply take the absolute value of the $t$ and $t_0$.
\begin{alignat*}{3}
\Delta t & = & t - t_0\\
& = & 358973\text{ s}\\
& = & 4.15478\text{ days}
\end{alignat*}
 
Last edited by a moderator:
Physics news on Phys.org

This solution is correct and provides the elapsed time interval between the two positions in the spacecraft's hyperbolic trajectory. If you are looking for a simpler or alternative method, you can also use Kepler's third law which states that the square of the orbital period is proportional to the cube of the semimajor axis. Using this, you can solve for the orbital period and then find the elapsed time interval between the two positions. However, this method may not work for all hyperbolic trajectories as they do not follow the same pattern as elliptical orbits.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K