MHB Solving for time in a hyperbolic trajectory

AI Thread Summary
The spacecraft is on a hyperbolic orbit with a semi-major axis of -35,000 km and an eccentricity of 1.2, transitioning from a true anomaly of 20° to 103°. The calculated elapsed time interval, Δt, between these two positions is approximately 4.15 days, which is significantly longer than the expected one hour. The solution involves determining the eccentric anomalies and using them to compute the mean anomalies, followed by the time calculations based on the specific hyperbolic equations. An alternative method suggested is to apply Kepler's third law, though it may not be applicable to all hyperbolic trajectories. The current solution is deemed correct despite the initial expectation of a shorter time interval.
Dustinsfl
Messages
2,217
Reaction score
5
A spacecraft is on a hyperbolic orbit relative to the Earth with $a = -35000$ km and an eccentricity of $e = 1.2$.
At some initial time $t_0$, the spacecraft is at a true anomaly of $\nu_0 = 20^{\circ}$.
At some later time $t$, the true anomaly is $\nu = 103^{\circ}$.
What is the elapsed time interval $\Delta t$ between these two positions?

This solution is wrong. The answer should be around an hour. How else can I do this?

Since we are dealing with hyperbolic trajectories, our equations for the eccentric hyperbolic anomaly are
\begin{alignat*}{3}
M_{\text{h}} & = & \frac{\mu_{earth}}{h^3}(e^2 - 1)^{3/2}t\\
M_{\text{h}} & = & e\sinh(F) - F
\end{alignat*}
Therefore, we need the eccentric anomalies $F$ and $F_0$.
\begin{alignat*}{3}
F & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu}{2}\right)\right]\\
& = & 41.51866^{\circ}\\
F_0 & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu_0}{2}\right)\right]\\
& = & 6.08648^{\circ}
\end{alignat*}
Since we don't know $h$ explicitly, we can solve for $h$,
$$
h = \sqrt{a\cdot\mu_{earth}\cdot(1 - e^2)}.
$$
Next, we need to find the eccentric anomaly for $F_0$ and $F$.
\begin{alignat*}{3}
M_{F_0} & = & e\sinh(F_0) - F_0\\
& = & -5.95877^{\circ}\\
M_{F} & = & e\sinh(F_0) - F_0\\
& = & -40.5709^{\circ}\\
\end{alignat*}
Finally, we can solve for the time and take the difference to obtain $\Delta t$.
\begin{alignat*}{3}
t & = & M_F\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -420773\text{ s}\\
t_0 & = & M_{F_0}\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -61800.2\text{ s}
\end{alignat*}
Since time isn't negative, we simply take the absolute value of the $t$ and $t_0$.
\begin{alignat*}{3}
\Delta t & = & t - t_0\\
& = & 358973\text{ s}\\
& = & 4.15478\text{ days}
\end{alignat*}
 
Last edited by a moderator:
Mathematics news on Phys.org

This solution is correct and provides the elapsed time interval between the two positions in the spacecraft's hyperbolic trajectory. If you are looking for a simpler or alternative method, you can also use Kepler's third law which states that the square of the orbital period is proportional to the cube of the semimajor axis. Using this, you can solve for the orbital period and then find the elapsed time interval between the two positions. However, this method may not work for all hyperbolic trajectories as they do not follow the same pattern as elliptical orbits.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top