MHB Solving for time in a hyperbolic trajectory

Dustinsfl
Messages
2,217
Reaction score
5
A spacecraft is on a hyperbolic orbit relative to the Earth with $a = -35000$ km and an eccentricity of $e = 1.2$.
At some initial time $t_0$, the spacecraft is at a true anomaly of $\nu_0 = 20^{\circ}$.
At some later time $t$, the true anomaly is $\nu = 103^{\circ}$.
What is the elapsed time interval $\Delta t$ between these two positions?

This solution is wrong. The answer should be around an hour. How else can I do this?

Since we are dealing with hyperbolic trajectories, our equations for the eccentric hyperbolic anomaly are
\begin{alignat*}{3}
M_{\text{h}} & = & \frac{\mu_{earth}}{h^3}(e^2 - 1)^{3/2}t\\
M_{\text{h}} & = & e\sinh(F) - F
\end{alignat*}
Therefore, we need the eccentric anomalies $F$ and $F_0$.
\begin{alignat*}{3}
F & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu}{2}\right)\right]\\
& = & 41.51866^{\circ}\\
F_0 & = & 2\tanh^{-1}\left[\sqrt{\frac{e - 1}{e + 1}}\cdot\tan\left(\frac{\nu_0}{2}\right)\right]\\
& = & 6.08648^{\circ}
\end{alignat*}
Since we don't know $h$ explicitly, we can solve for $h$,
$$
h = \sqrt{a\cdot\mu_{earth}\cdot(1 - e^2)}.
$$
Next, we need to find the eccentric anomaly for $F_0$ and $F$.
\begin{alignat*}{3}
M_{F_0} & = & e\sinh(F_0) - F_0\\
& = & -5.95877^{\circ}\\
M_{F} & = & e\sinh(F_0) - F_0\\
& = & -40.5709^{\circ}\\
\end{alignat*}
Finally, we can solve for the time and take the difference to obtain $\Delta t$.
\begin{alignat*}{3}
t & = & M_F\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -420773\text{ s}\\
t_0 & = & M_{F_0}\cdot\frac{h^3}{\mu_{earth}\cdot(e^2 - 1)^{3/2}}\\
& = & -61800.2\text{ s}
\end{alignat*}
Since time isn't negative, we simply take the absolute value of the $t$ and $t_0$.
\begin{alignat*}{3}
\Delta t & = & t - t_0\\
& = & 358973\text{ s}\\
& = & 4.15478\text{ days}
\end{alignat*}
 
Last edited by a moderator:
Mathematics news on Phys.org

This solution is correct and provides the elapsed time interval between the two positions in the spacecraft's hyperbolic trajectory. If you are looking for a simpler or alternative method, you can also use Kepler's third law which states that the square of the orbital period is proportional to the cube of the semimajor axis. Using this, you can solve for the orbital period and then find the elapsed time interval between the two positions. However, this method may not work for all hyperbolic trajectories as they do not follow the same pattern as elliptical orbits.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top