MHB Solving for x: Clearing Fractions or Finding Common Denominator?

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Fractions
Click For Summary
SUMMARY

The discussion focuses on solving inequalities and equations involving fractions, specifically the inequality $$\frac{x-2}{x-5}>\frac{x-3}{x-4}$$ and the equation $$\frac{1}{x-2}=\frac{3}{x+2}-\frac{6x}{(x+2)(x-2)}$$. The consensus is that finding a common denominator is the safest approach to avoid sign changes that could eliminate potential solutions. The critical points identified for the inequality are $x = \frac{7}{2}, 4, 5$, confirming that $x>5$ is a valid solution. Additionally, when solving the equation, multiplying by $(x-2)(x+2)$ is acceptable, but one must remember to exclude $x=\pm 2$ from the solutions.

PREREQUISITES
  • Understanding of rational expressions and inequalities
  • Knowledge of critical points and sign analysis
  • Familiarity with algebraic manipulation techniques
  • Ability to identify extraneous solutions in equations
NEXT STEPS
  • Study the method of finding critical points in rational inequalities
  • Learn about the implications of multiplying both sides of an inequality
  • Explore techniques for solving rational equations without introducing extraneous solutions
  • Investigate the use of sign charts to analyze the behavior of rational functions
USEFUL FOR

Students and educators in algebra, particularly those focusing on inequalities and rational expressions, as well as anyone looking to strengthen their problem-solving skills in algebraic contexts.

Dethrone
Messages
716
Reaction score
0
Given:

$$\frac{x-2}{x-5}>\frac{x-3}{x-4}$$

How I would normally solve it is to bring everything over to one side and find a common denominator. The answer of which is $x>5$

Now a commentary on this question says to "watch out" for sign changes if you multiply both sides by an expression, so I decided to try it out:

If $x>4$:
$$\frac{(x-2)(x-4)}{x-5}>x-3$$

If $x>5$ and $x>4$:
$$(x-2)(x-4)>(x-3)(x-5)$$

Solving gives us $x>5$, which is the same as above.

Question: Is it just a lucky coincidence that the restriction I applied on the second step $x>4$ just HAPPENED to SATISFY our answer, or could the answer have been say $x<3$ and dividing both sides would have eliminated that solution?

Question 2:

$$\frac{1}{x-2}=\frac{3}{x+2}-\frac{6x}{(x+2)(x-2)}$$

To begin this problem, would you attempt to "clear the fraction" by multiplying by (x-2)(x+2)? I always get paranoid about doing it, because it introduces the solution $x=\pm 2$, which you will then have to replug back into the original equation to confirm, right?

Would attempting to find a common denominator and bring everything to one side be a smarter approach? Or should just clearing the fraction, which is much faster, be preferred? It's just that the latter requires that you resubstitute back into the original equation, whereas the former doesn't require resubstitution. Thoughts?
 
Last edited:
Mathematics news on Phys.org
Rido12 said:
Given:

$$\frac{x-2}{x-5}>\frac{x-3}{x-4}$$

How I would normally solve it is to bring everything over to one side and find a common denominator. The answer of which is $x>5$

Now a commentary on this question says to "watch out" for sign changes if you multiply both sides by an expression, so I decided to try it out:

If $x>4$:
$$\frac{(x-2)(x-4)}{x-5}>x-3$$

If $x>5$ and $x>4$:
$$(x-2)(x-4)>(x-3)(x-5)$$

Solving gives us $x>5$, which is the same as above.

Question: Is it just a lucky coincidence that the restriction I applied on the second step $x>4$ just HAPPENED to SATISFY our answer, or could the answer have been say $x<3$ and dividing both sides would have eliminated that solution?

What You're saying is true in part. Assuming x <4 the inequality is verified for $\frac{7}{2} < x <4$ ...

Kind regards

$\chi$ $\sigma$
 
Rido12 said:
Given:

$$\frac{x-2}{x-5}>\frac{x-3}{x-4}$$

How I would normally solve it is to bring everything over to one side and find a common denominator.
I think that this is definitely the safest strategy. In this case, you would get $$\frac{x-2}{x-5} - \frac{x-3}{x-4} > 0,$$ $$\frac{(x-2)(x-4) - (x-3)(x-5)}{(x-4)(x-5)} > 0,$$ $$\frac{2x-7}{(x-4)(x-5)} > 0.$$ That expression changes sign when any of the linear factors in the numerator or denominator changes sign, telling you that the critical points are when $x = \frac72,\ 4,\ 5$ (as chisigma has pointed out).

Rido12 said:
Question 2:

$$\frac{1}{x-2}=\frac{3}{x+2}-\frac{6x}{(x+2)(x-2)}$$

To begin this problem, would you attempt to "clear the fraction" by multiplying by (x-2)(x+2)? I always get paranoid about doing it, because it introduces the solution $x=\pm 2$, which you will then have to replug back into the original equation to confirm, right?
This is an equation rather than an inequality, so in this case there is nothing to be lost by multiplying by $(x-2)(x+2)$ (except that you have to remember that $x=\pm 2$ cannot be solutions).
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K