MHB Solving for $x+y$ in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
In triangle ABC with a right angle at C, the sides are defined as AB = c, BC = a, and CA = b, with x = a/c and y = b/c. The equation 13xy = 15(x+y) - 15 is given to find the value of x + y. The problem is framed as a challenge suitable for high school students, indicating its educational purpose. The discussion centers around solving the equation to determine the sum x + y. The mathematical challenge encourages engagement with concepts of geometry and algebra.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC ,\angle C=90^o, \overline{AB}=c, \overline{BC}=a, \overline{CA}=b, x=\dfrac{a}{c}, y=\dfrac{b}{c}$

and satisfying: $13xy=15(x+y)-15,$ find $x+y$
 
Mathematics news on Phys.org
Albert,
This is a challenge for high school students?
Clearly $x^2+y^2=1$ and $13xy=15(x+y)-15$ or easily
$$13(x+y)^2=30(x+y)-17$$
Hence by the quadratic formula $x+y=1$ or $x+y={17\over13}$
 
Albert said:
$\triangle ABC ,\angle C=90^o, \overline{AB}=c, \overline{BC}=a, \overline{CA}=b, x=\dfrac{a}{c}, y=\dfrac{b}{c}$

and satisfying: $13xy=15(x+y)-15,$ find $x+y$

because $\angle C = 90^\circ$ hence $c^2= a^2 + b^2$ or $x^2+y^2 = 1$
hence $(x+y)^2 = 1 + 2xy\cdots(1)$
now
$13xy= 15(x+y) - 15$
or $15(x+y) = 15 + 13xy$
square both sides
$15^2 ( 1+ 2xy) = 225 + 2* 15 * 13 xy + 169 x^2y^2$ using (1)
or $ 60xy = 169 x^2y^2$
or $60 = 169 xy$ as xy is not 0
so $(x+y)^2 = 1 + 2xy = 1 + 2 * \frac{60}{169} = \frac{289}{169}= (\frac{17}{13})^2$
or $(x+y) = \dfrac{17}{13}$
 
johng said:
Albert,
This is a challenge for high school students?
Clearly $x^2+y^2=1$ and $13xy=15(x+y)-15$ or easily
$$13(x+y)^2=30(x+y)-17$$
Hence by the quadratic formula $x+y=1$ or $x+y={17\over13}$
good approach but x + y cannot be 1 because the x or y = 0 which cannot be true in a triangle
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top