MHB Solving Inequality 4x-12≤6x+20

  • Thread starter Thread starter gazparkin
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
To solve the inequality 4x - 12 ≤ 6x + 20, first rearrange the equation by moving all terms involving x to one side and constant terms to the other. This leads to 4x - 6x ≤ 20 + 12, simplifying to -2x ≤ 32. Dividing both sides by -2 reverses the inequality, yielding x ≥ -16. It is crucial to maintain the correct inequality sign throughout the process to ensure an accurate solution.
gazparkin
Messages
17
Reaction score
0
Hello,

I'm working on solving linear equalities (with equations) and can anyone help with the below question. I know the answer is -16, but I can't figure out the steps that gets it to this.

4x-12≤6x+20

Once I've evened out the x's on both sides and got this to 2x, I'm then left with -12 and +20, which leaves +8, divided by the remaining 2x, which leaves 4. This isn't correct though, so could anyone help me with the different stages on this.

Thank you!
 
Mathematics news on Phys.org
Hello gazparkin.

gazparkin said:
Once I've evened out the x's on both sides and got this to 2x, I'm then left with -12 and +20, which leaves +8, divided by the remaining 2x, which leaves 4.
You’re on the right line, but when you move the $20$ from the RHS to the LHS, you should have $-20$, not $+20$.

gazparkin said:
the answer is -16
The answer is not just -16. The answer involves $-16$, the variable $x$, and an inequality sign in between. It’s important to get the inequality sign right, or you won’t get any marks for the question.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top