Solving Integral of 1/sqrt(1+x^2)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of \( I = \int \frac{1}{\sqrt{1+x^2}} \, dx \) can be solved using trigonometric substitution, specifically \( x = \tan \theta \) which leads to \( dx = \sec^2 \theta \, d\theta \). This transforms the integral into \( I = \int \sec \theta \, d\theta \). By substituting \( u = \sec \theta + \tan \theta \), the integral simplifies to \( I = \ln |u| + c \), resulting in the final expression \( I = \ln |\sqrt{1+x^2} + x| + c \). Alternative methods, such as hyperbolic substitution with \( x = \sinh(t) \), also yield the result \( I = \text{arsinh}(x) + C \).

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities and substitutions
  • Knowledge of hyperbolic functions
  • Ability to manipulate logarithmic expressions
NEXT STEPS
  • Study trigonometric substitution techniques in integral calculus
  • Learn about hyperbolic functions and their applications in integration
  • Explore the derivation and properties of the inverse hyperbolic sine function
  • Practice solving integrals involving square roots and rational functions
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to enhance their understanding of integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$I=\int\frac{1}{\sqrt{1+x^2}}$
I followed this example but it surprised me
$x = \tan\theta \ \ dx = \sec^{2}\theta{d\theta}$
$$I=\int\left(\frac{1}{\sec\theta}\right){\sec^{2}\theta{d\theta}}
=\int{\sec\theta{d\theta}}$$

Why does this need to be done?
$$I=\int{\left(\frac{\sec^2\theta + \sec\theta\tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$$

Let, $(\sec\theta + \tan\theta) = u$
$(\sec^2\theta + \sec\theta\tan\theta)d\theta = du$

$$I=\int\frac{du}{u}$$

$$I=\ln{u}+c$$

$$I=\ln{\vert\sec\theta + \tan\theta\vert}+c$$

$$I=\ln{\vert\sqrt{1+\tan^2\theta} + \tan\theta\vert}+c$$

$I=\ln{\vert\sqrt{1+x^2} + x\vert}+c$, where $c$ is a constant
 
Last edited:
Physics news on Phys.org
karush said:
$I=\int\frac{1}{\sqrt{1+x^2}}$
I followed this example but it surprised me
$x = \tan\theta \ \ dx = \sec^{2}\theta{d\theta}$
$$I=\int\left(\frac{1}{\sec\theta}\right){\sec^{2}\theta{d\theta}}
=\int{\sec\theta{d\theta}}$$

Why does this need to be done?
$$I=\int{\left(\frac{\sec^2\theta + \sec\theta\tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$$

Let, $(\sec\theta + \tan\theta) = u$
$(\sec^2\theta + \sec\theta\tan\theta)d\theta = du$

$$I=\int\frac{du}{u}$$

$$I=\ln{u}+c$$

$$I=\ln{\vert\sec\theta + \tan\theta\vert}+c$$

$$I=\ln{\vert\sqrt{1+\tan^2\theta} + \tan\theta\vert}+c$$

$I=\ln{\vert\sqrt{1+x^2} + x\vert}+c$, where $c$ is a constant

They did it because they recognised that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}\theta}\,\left[ \sec{\left( \theta \right) } + \tan{ \left( \theta \right) } \right] = \sec{\left( \theta \right) } \tan{ \left( \theta \right) } + \tan^2{ \left( \theta \right) } \end{align*}$. As you say, this is not obvious. I personally would have written

$\displaystyle \begin{align*} \sec{ \left( \theta \right) } &= \frac{1}{\cos{\left( \theta \right) } } \\ &= \frac{ \cos{ \left( \theta \right) } }{\cos^2{ \left( \theta \right) } } \\ &= \frac{\cos{ \left( \theta \right) }}{1 - \sin^2{ \left( \theta \right) }} \end{align*}$

and then substitute $\displaystyle \begin{align*} u = \sin{ \left( \theta \right) } \implies \mathrm{d}u = \cos{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$.On second thought, at the very start I would just substitute $\displaystyle \begin{align*} x =\sinh{(t)} \implies \mathrm{d}x = \cosh{(t)} \,\mathrm{d}t \end{align*}$...

$\displaystyle \begin{align*} \int{ \frac{1}{\sqrt{1 + x^2}}\,\mathrm{d}x} &= \int{ \frac{1}{\sqrt{1 + \sinh^2{(t)}}}\,\cosh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh{(t)}}{\sqrt{\cosh^2{(t)}}}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh{(t)}}{\cosh{(t)}}\,\mathrm{d}t } \\ &= \int{ 1\,\mathrm{d}t } \\ &= t + C \\ &= \textrm{arsinh}\,\left( x \right) + C \end{align*}$
 
Thanks that was very helpful..

Not sure why some of these examples
go off on weird trails

Your method makes more sense
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K