MHB Solving Integral of 1/sqrt(1+x^2)

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integral of 1/sqrt(1+x^2) can be solved using trigonometric substitution, specifically letting x = tan(θ), which leads to the integral of sec(θ). This process involves recognizing that the derivative of sec(θ) + tan(θ) simplifies the integration. The final result is expressed as I = ln|sec(θ) + tan(θ)| + c, which can be rewritten in terms of x as I = ln|√(1+x^2) + x| + c. Alternative methods, such as hyperbolic substitution, also yield the same result, demonstrating the flexibility in approaches to solving this integral. The discussion highlights the importance of recognizing derivatives and substitution techniques in integral calculus.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$I=\int\frac{1}{\sqrt{1+x^2}}$
I followed this example but it surprised me
$x = \tan\theta \ \ dx = \sec^{2}\theta{d\theta}$
$$I=\int\left(\frac{1}{\sec\theta}\right){\sec^{2}\theta{d\theta}}
=\int{\sec\theta{d\theta}}$$

Why does this need to be done?
$$I=\int{\left(\frac{\sec^2\theta + \sec\theta\tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$$

Let, $(\sec\theta + \tan\theta) = u$
$(\sec^2\theta + \sec\theta\tan\theta)d\theta = du$

$$I=\int\frac{du}{u}$$

$$I=\ln{u}+c$$

$$I=\ln{\vert\sec\theta + \tan\theta\vert}+c$$

$$I=\ln{\vert\sqrt{1+\tan^2\theta} + \tan\theta\vert}+c$$

$I=\ln{\vert\sqrt{1+x^2} + x\vert}+c$, where $c$ is a constant
 
Last edited:
Physics news on Phys.org
karush said:
$I=\int\frac{1}{\sqrt{1+x^2}}$
I followed this example but it surprised me
$x = \tan\theta \ \ dx = \sec^{2}\theta{d\theta}$
$$I=\int\left(\frac{1}{\sec\theta}\right){\sec^{2}\theta{d\theta}}
=\int{\sec\theta{d\theta}}$$

Why does this need to be done?
$$I=\int{\left(\frac{\sec^2\theta + \sec\theta\tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$$

Let, $(\sec\theta + \tan\theta) = u$
$(\sec^2\theta + \sec\theta\tan\theta)d\theta = du$

$$I=\int\frac{du}{u}$$

$$I=\ln{u}+c$$

$$I=\ln{\vert\sec\theta + \tan\theta\vert}+c$$

$$I=\ln{\vert\sqrt{1+\tan^2\theta} + \tan\theta\vert}+c$$

$I=\ln{\vert\sqrt{1+x^2} + x\vert}+c$, where $c$ is a constant

They did it because they recognised that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}\theta}\,\left[ \sec{\left( \theta \right) } + \tan{ \left( \theta \right) } \right] = \sec{\left( \theta \right) } \tan{ \left( \theta \right) } + \tan^2{ \left( \theta \right) } \end{align*}$. As you say, this is not obvious. I personally would have written

$\displaystyle \begin{align*} \sec{ \left( \theta \right) } &= \frac{1}{\cos{\left( \theta \right) } } \\ &= \frac{ \cos{ \left( \theta \right) } }{\cos^2{ \left( \theta \right) } } \\ &= \frac{\cos{ \left( \theta \right) }}{1 - \sin^2{ \left( \theta \right) }} \end{align*}$

and then substitute $\displaystyle \begin{align*} u = \sin{ \left( \theta \right) } \implies \mathrm{d}u = \cos{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$.On second thought, at the very start I would just substitute $\displaystyle \begin{align*} x =\sinh{(t)} \implies \mathrm{d}x = \cosh{(t)} \,\mathrm{d}t \end{align*}$...

$\displaystyle \begin{align*} \int{ \frac{1}{\sqrt{1 + x^2}}\,\mathrm{d}x} &= \int{ \frac{1}{\sqrt{1 + \sinh^2{(t)}}}\,\cosh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh{(t)}}{\sqrt{\cosh^2{(t)}}}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh{(t)}}{\cosh{(t)}}\,\mathrm{d}t } \\ &= \int{ 1\,\mathrm{d}t } \\ &= t + C \\ &= \textrm{arsinh}\,\left( x \right) + C \end{align*}$
 
Thanks that was very helpful..

Not sure why some of these examples
go off on weird trails

Your method makes more sense
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K