Solving Mechanics: Friction of Sledge on Slope

  • Context: MHB 
  • Thread starter Thread starter Shah 72
  • Start date Start date
  • Tags Tags
    Friction Mechanics
Click For Summary
SUMMARY

The discussion focuses on calculating the total distance a 4kg sledge moves down a slope at an 18-degree angle when pulled by an 8N force for 3 seconds before the rope detaches. The coefficient of friction is 0.4. The calculations reveal that during the drag, the acceleration is 1.39 m/s², resulting in a distance of 6.28m. After the rope detaches, the sledge decelerates at -0.714 m/s², covering an additional 12.25m, leading to a total distance of 18.5m, which matches the textbook answer.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Knowledge of forces acting on an inclined plane
  • Familiarity with kinematic equations
  • Basic concepts of friction and coefficients of friction
NEXT STEPS
  • Study the application of Newton's second law in inclined plane problems
  • Learn about the effects of friction on motion in physics
  • Explore kinematic equations in detail for various motion scenarios
  • Investigate the role of normal force in inclined plane dynamics
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators looking for practical examples of forces on inclined planes and friction calculations.

Shah 72
MHB
Messages
274
Reaction score
0
A boy drags a sledge of mass 4kg from rest down a rough slope at an angle of 18 degree to the horizontal. He pulls it with a force of 8N for 3s by a rope that is angled at 10 degree above the parallel down the slope. After 3s the rope becomes detached from the sledge. The coefficient of friction between the slope and the sledge is 0.4. Find the total distance the sledge has moved down the slope from when the boy started dragging it until it comes to rest.
For the first part before the rope is detached
I calculated
R=40cos 18+8sin 10
Coefficient of friction =0.514
F=m×a
So I got a = 0.003m/s^2.
I then calculated s= ut +1/2 at^2 and got s1 =0.0135m.
I calculated v=0.009m/s
Part 2 when the rope is detached
R=40cos 18
By using F=m×a
I got a=0.714m/s^2.
Iam not getting the right ans for the total distance.
The ans in the textbook is 18.5m.
Pls help
 
Mathematics news on Phys.org
during the drag ...

$ma = mg\sin(18) + 8\cos(10) - \mu[mg\cos(18) - 8\sin(10)]$

try again
 
I did your way and got a= 0.35m/s^2, v=1.05m/s and s=1.575m
Now the second part when the rope is detached
R=40cos18, F=40sin18 -0.4×40cos18, F=2.84N, using F=m×a, I get a=0.71m/s^2, and s2=0.776m. I still don't get the ans 18.5m
 
recheck your acceleration calculation during the drag …

D90B437C-D771-43CE-A3C4-230F944E72E3.jpeg
 
skeeter said:
recheck your acceleration calculation during the drag …

https://www.physicsforums.com/attachments/11134
I did not understand in the second part when the rope is detached, how is it 10 sin 18 + 2 cos 10. Shouldn't it be R = 40 cos 18 and F= 40sin 18- 0.4(40cos 18)
 
during the drag …

$a_1 = 10\sin(18) + 2\cos(10) - 0.4[10\cos(18) - 2\sin(10)] = 1.39 \, m/s^2$

$\Delta x_1 = \dfrac{1}{2}a_1 \cdot 3^2 = 6.28 \, m$

$v_1 = 0 + a_1 \cdot 3 = 4.18 \, m/s$after the rope is detached …

$a_2 = 10\sin(18) - 4\cos(18) = -0.714 \, m/s^2$

$\Delta x_2 = \dfrac{0^2- v_1^2}{2a_2} = 12.25 \, m$

total displacement = 6.28 + 12.25 = 18.5 m
 
skeeter said:
during the drag …

$a_1 = 10\sin(18) + 2\cos(10) - 0.4[10\cos(18) - 2\sin(10)] = 1.39 \, m/s^2$

$\Delta x_1 = \dfrac{1}{2}a_1 \cdot 3^2 = 6.28 \, m$

$v_1 = 0 + a_1 \cdot 3 = 4.18 \, m/s$after the rope is detached …

$a_2 = 10\sin(18) - 4\cos(18) = -0.714 \, m/s^2$

$\Delta x_2 = \dfrac{0^2- v_1^2}{2a_2} = 12.25 \, m$

total displacement = 6.28 + 12.25 = 18.5 m
Thank you very much!
 
skeeter said:
during the drag …

$a_1 = 10\sin(18) + 2\cos(10) - 0.4[10\cos(18) - 2\sin(10)] = 1.39 \, m/s^2$

$\Delta x_1 = \dfrac{1}{2}a_1 \cdot 3^2 = 6.28 \, m$

$v_1 = 0 + a_1 \cdot 3 = 4.18 \, m/s$after the rope is detached …

$a_2 = 10\sin(18) - 4\cos(18) = -0.714 \, m/s^2$

$\Delta x_2 = \dfrac{0^2- v_1^2}{2a_2} = 12.25 \, m$

total displacement = 6.28 + 12.25 = 18.5 m
Can you also pls explain why I don't need to take the normal contact force and the force between the slope and the sledge?
20210510_100241.jpg
 
The Normal Reaction force, $N$, is perpendicular to the incline. Reference the two FBD's attached ...

during the drag by the 8N applied force,

$N_1 = mg\cos{\theta} - F\sin{\phi} \implies f_1 = \mu(mg\cos{\theta} - F\sin{\phi})$

after the dragging force is gone,

$N_2 = mg\cos{\theta} \implies f_2 = \mu mg\cos{\theta}$

incline_FBDx2.jpg
 
Last edited by a moderator:
  • #10
skeeter said:
during the drag …

$a_1 = 10\sin(18) + 2\cos(10) - 0.4[10\cos(18) - 2\sin(10)] = 1.39 \, m/s^2$

$\Delta x_1 = \dfrac{1}{2}a_1 \cdot 3^2 = 6.28 \, m$

$v_1 = 0 + a_1 \cdot 3 = 4.18 \, m/s$after the rope is detached …

$a_2 = 10\sin(18) - 4\cos(18) = -0.714 \, m/s^2$

$\Delta x_2 = \dfrac{0^2- v_1^2}{2a_2} = 12.25 \, m$

total displacement = 6.28 + 12.25 = 18.5 m
I understood. Thank you so so so much!
skeeter said:
The Normal Reaction force, $N$, is perpendicular to the incline. Reference the two FBD's attached ...

during the drag by the 8N applied force,

$N_1 = mg\cos{\theta} - F\sin{\phi} \implies f_1 = \mu(mg\cos{\theta} - F\sin{\phi})$

after the dragging force is gone,

$N_2 = mg\cos{\theta} \implies f_2 = \mu mg\cos{\theta}$

View attachment 11136
View attachment 11136
I understood this. I was doing the silly mistake of finding a new coefficient of friction. Thank you so so much for explaining!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K