MHB Solving Minute Hand Distance from Ground Graph Problem

AI Thread Summary
To solve the minute hand distance from the ground problem, first determine the initial height of the minute hand tip at 10 a.m., which is 66 inches plus the 6-inch length of the minute hand, totaling 72 inches. The graph representing this motion will be periodic, reflecting the circular movement of the minute hand. Options (A) and (C) are ruled out because (A) does not account for the return to the original height, and (C) incorrectly represents the motion with straight lines. This leaves options (B) and (D), with (B) being the correct choice due to its smooth curve, while (D) suggests an unrealistic sudden change in direction. Understanding the cosine function and its graph is crucial for visualizing this periodic motion.
jshayhsei
Messages
2
Reaction score
0
I'd like to know how to solve this. I'm pretty lost as to how to solve this. I want to say that the graph would look periodic because of the graph of the time would go down and then go back up again, but I really don't have anything concrete.

The question states:

The circular clock has a diameter of 14 inches and its minute had has length 6 inches. It is placed on the wall so that the center of the clock is 66 inches above the ground. Which of the following graphs could represent the distance from the tip of the arrow of the minute hand to the ground with respect to time from 10 a.m. to 11 a.m.?

View attachment 8815
 

Attachments

  • graphs.jpg
    graphs.jpg
    55.7 KB · Views: 143
Mathematics news on Phys.org
Hi, and welcome to the forum.

Can you figure out the initial position (height above the ground) of the minute hand tip at 10 a.m.? Also, do you know what cosine is and what its graph looks like?
 
(A) isn't possible because the minute had will have returned to its original height after 60 minutes.
(C) isn't possible because it has straight lines while the minute hand in moving in a circle.
That leaves (B) and (D) and the most obvious difference between the is that (B) is "smooth" while (D) has a cusp at the bottom. (D) implies a sudden change in direction which cannot be the case in circular motion.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top