Solving non-homogeneous system of ODE using matrix exponential

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Ode
Click For Summary

Homework Help Overview

The discussion revolves around solving a non-homogeneous system of ordinary differential equations (ODEs) using the matrix exponential method. Participants are examining the inclusion of constants of integration in the context of the relevant equations for the solution.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants are questioning the necessity of including constants of integration in the solution formula, particularly in relation to the use of indefinite versus definite integrals. There is a focus on the implications of these choices on the overall solution.

Discussion Status

The discussion is active, with participants providing insights into the role of arbitrary constants in the context of integration. Some participants are clarifying the differences between indefinite and definite integrals and their impact on the solution structure.

Contextual Notes

There appears to be confusion regarding the correct formulation of the solution and the treatment of initial conditions, as well as the specific equations being referenced in the discussion.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1715737007574.png

I don't understand why they include the constants of integration ##c_1 and c_2##, since the formula that we are meant to be using is ##\vec x = e^{At}c + e^{At}\int_{t_0}^{t} e^{-As} F(s)~ds## so we already have the integration variables. Does anybody please know why?

Thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this problem,
View attachment 345266
I don't understand why they include the constants of integration ##c_1 and c_2##, since the formula that we are meant to be using is ##\vec x = e^{At}c + e^{At}\int_{t_0}^{t} e^{-As} F(s)~ds## so we already have the integration variables. Does anybody please know why?

Thanks!
Sorry I made a mistake, the equation I'm using is ##\vec x = e^{At}\vec x(0)+ e^{At}\int_{0}^{t} e^{-As} f(s)~ds##
 
They are evidently using e^{At}\int^t e^{-As}f(s)\,ds with an indefinite integral, so that an arbitrary constant of integration must be included. If instead the integral is made definite with a lower limit of t_0, then the arbitrary constant becomes \vec{x}(t_0).
 
  • Love
Likes   Reactions: member 731016
Thank you for your reply @pasmith! Sorry do you mean ##\vec x = e^{At}\vec x(0) + \int e^{At}f(t)~dt## as the indefinite integral?

Thanks!
 
No. The indefinite integral already includes an arbitrary constant; you don't need to add an e^{At}x(0) term in this case. That leaves e^{At} \int e^{-At}f(t)\,dt.
 
Last edited by a moderator:
  • Love
Likes   Reactions: member 731016

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K