MHB Solving Real Number Variables & Parabola Equations

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Parabola Variables
AI Thread Summary
The problem involves finding the vertex and focus of a parabola defined by the equation 5l² + 6m² - 4lm + 3l = 0, where the line lx + my = 1 is tangent to the parabola. To solve, the line can be expressed in terms of y, leading to a quadratic equation in y. The condition for tangency requires the discriminant of this quadratic to be zero, allowing for the determination of the parabola's parameters a, b, and c. By equating coefficients from the derived equations, the vertex and focus of the parabola can be calculated. This approach effectively links the variable line to the fixed parabola's characteristics.
DrunkenOldFool
Messages
20
Reaction score
0
This question was asked in my exam and I could not answer it. I would like to know how it can be solved.

If $l$ and $m$ are variable real numbers such that $5l^2+6m^2-4lm+3l=0$, then a variable line $lx+my=1$ always touches a fixed parabola, whose axis is parallel to the x-axis.

(a) Find the vertex of the parabola.
(b) Find the focus of the parabola.
 
Mathematics news on Phys.org
Let the described parabola be given by:

$\displaystyle x=ay^2+by+c$

From the given line, we find:

$\displaystyle x=\frac{1-my}{l}$

Hence, we have:

$\displaystyle \frac{1-my}{l}=ay^2+by+c$

Arranging the quadratic in $\displaystyle y$ in standard form, we find:

$\displaystyle aly^2+(bl+m)y+(cl-1)=0$

We are told the line is tangent to the parabola, which means there will only be one root, and so we must have that the discriminant is zero. Equating the discriminant to zero, expanding and multiplying by a crucial number, you will find that using the given implicit relation between $\displaystyle l$ and $\displaystyle m$ you can obtain sufficient equations by equating coefficients to determine the parameters of the parabola $\displaystyle a,\,b,\,c$.

And from this, you may determine the vertex and focus of the parabola.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top