MHB Solving Real Number Variables & Parabola Equations

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Parabola Variables
DrunkenOldFool
Messages
20
Reaction score
0
This question was asked in my exam and I could not answer it. I would like to know how it can be solved.

If $l$ and $m$ are variable real numbers such that $5l^2+6m^2-4lm+3l=0$, then a variable line $lx+my=1$ always touches a fixed parabola, whose axis is parallel to the x-axis.

(a) Find the vertex of the parabola.
(b) Find the focus of the parabola.
 
Mathematics news on Phys.org
Let the described parabola be given by:

$\displaystyle x=ay^2+by+c$

From the given line, we find:

$\displaystyle x=\frac{1-my}{l}$

Hence, we have:

$\displaystyle \frac{1-my}{l}=ay^2+by+c$

Arranging the quadratic in $\displaystyle y$ in standard form, we find:

$\displaystyle aly^2+(bl+m)y+(cl-1)=0$

We are told the line is tangent to the parabola, which means there will only be one root, and so we must have that the discriminant is zero. Equating the discriminant to zero, expanding and multiplying by a crucial number, you will find that using the given implicit relation between $\displaystyle l$ and $\displaystyle m$ you can obtain sufficient equations by equating coefficients to determine the parameters of the parabola $\displaystyle a,\,b,\,c$.

And from this, you may determine the vertex and focus of the parabola.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top