Solving Schrod. Eqn. for Potential Barrier with E > V

Click For Summary
SUMMARY

The discussion centers on the solutions to the Schrödinger equation for two quantum mechanics scenarios: the infinite square well and a potential barrier where the energy (E) exceeds the potential (V0). The equation for the infinite square well, d²ψ/dx² + k²ψ = 0, yields oscillating solutions due to k² being positive. In contrast, the potential barrier scenario leads to solutions of the form Cexp(ikx) + Dexp(-ikx) for x > 0, which are also oscillating despite initial confusion regarding their nature. The key takeaway is that both scenarios yield oscillating solutions, with the misunderstanding stemming from the interpretation of the solutions rather than the mathematical formulation.

PREREQUISITES
  • Understanding of the Schrödinger equation in quantum mechanics
  • Familiarity with differential equations and their solutions
  • Knowledge of complex exponentials and Euler's formula
  • Basic concepts of quantum potential barriers and wave functions
NEXT STEPS
  • Study the derivation and implications of the Schrödinger equation in quantum mechanics
  • Explore the mathematical properties of oscillatory solutions in differential equations
  • Learn about complex numbers and their applications in quantum mechanics
  • Investigate the physical interpretations of wave functions in potential barriers
USEFUL FOR

Students and professionals in quantum mechanics, physicists, and anyone interested in understanding wave functions and potential barriers in quantum systems.

mindarson
Messages
64
Reaction score
0
I have a question that's driving me insane and I'm sure there's a simple answer that I'm missing for some reason, but I'm not getting my a-ha moment.

Consider 2 cases from intro QM:

Infinite square well

Potential barrier with E > V0

For the infinite square well, the Schrödinger eqn gives

d2ψ/dx2 + k2ψ = 0

Since k2 > 0, this gives oscillating solutions (some combination of sines and cosines). Correct?

For the potential barrier with E > V0, the Schrödinger eqn gives (with the potential jumping from 0 to V0 at x = 0)

d2ψ/dx2 + k2IE = 0 (where kI = √2mE/(hbar2)

prior to the potential step (i.e. for x < 0) and

d2ψ/dx2 + k2IIE = 0 (where kII = √2m(E-V0)/(hbar2)

after the potential step (for x > 0)

My problem is this: As far as I can tell, both kI and kII are positive numbers (since E > V0 > 0). Why, then, do they give non-oscillating solutions? Whereas, for the infinite square well, a positive k gave oscillating solutions?

Am I making a sign error here or just forgetting something from differential equations? What is different about these equations that one of them gives oscillating, and the other non-oscillating, solutions?

Thanks for any help!
 
Physics news on Phys.org
mindarson said:
I have a question that's driving me insane and I'm sure there's a simple answer that I'm missing for some reason, but I'm not getting my a-ha moment.

Consider 2 cases from intro QM:

Infinite square well

Potential barrier with E > V0

For the infinite square well, the Schrödinger eqn gives

d2ψ/dx2 + k2ψ = 0

Since k2 > 0, this gives oscillating solutions (some combination of sines and cosines). Correct?

For the potential barrier with E > V0, the Schrödinger eqn gives (with the potential jumping from 0 to V0 at x = 0)

d2ψ/dx2 + k2IE = 0 (where kI = √2mE/(hbar2)

prior to the potential step (i.e. for x < 0) and

d2ψ/dx2 + k2IIE = 0 (where kII = √2m(E-V0)/(hbar2)

after the potential step (for x > 0)

My problem is this: As far as I can tell, both kI and kII are positive numbers (since E > V0 > 0). Why, then, do they give non-oscillating solutions? Whereas, for the infinite square well, a positive k gave oscillating solutions?

Am I making a sign error here or just forgetting something from differential equations? What is different about these equations that one of them gives oscillating, and the other non-oscillating, solutions?

Thanks for any help!

Why do you think the solution is non-oscillating? What do you think the solution is?
 
Well, I think it all hinges on the sign of k2.

If I have a differential equation

d2f(x)/dx2 = αf(x),

then if α < 0, the equation is satisfied by f(x) = sin(x√α) (or f(x) = cos(x√α) or combination of the two) (oscillating). Whereas if α > 0, the equation is satisfied by f(x) = exp(x√α) (non-oscillating). Which I verify by actually differentiating the functions.
 
stevendaryl said:
Why do you think the solution is non-oscillating? What do you think the solution is?

As far as what is leading me to go against my own reasoning, every text I've consulted, both physical and online, tells me that in the region x > 0 where V0 > 0 (but E > V0), the solutions to the appropriate Schr. Eqn are of the form

Cexp(ikx) + Dexp(-ikx)

where k is the wave number appropriate to the region (kII in the original post).
 
Ok, I seriously feel like a heel. I see my mistake. The complex exponentials DO describe an oscillating function, according to Euler's equation.

Ugh. Sorry about that :(
 
mindarson said:
As far as what is leading me to go against my own reasoning, every text I've consulted, both physical and online, tells me that in the region x > 0 where V0 > 0 (but E > V0), the solutions to the appropriate Schr. Eqn are of the form

Cexp(ikx) + Dexp(-ikx)

where k is the wave number appropriate to the region (kII in the original post).

Yes, and that's an oscillating solution. Do you know the equation: exp(ikx) = cos(kx) + i sin(kx)?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K