MHB Solving Second order non - homogeneous Differential Equation

Click For Summary
To solve the second-order non-homogeneous differential equation y’’ – 2y’ – 3y = 64e^(-x)x, the complementary solution is derived from the roots of the homogeneous equation, yielding y = c1e^(3x) + c2e^(-x). The proposed particular solution takes the form e^(-x)(Ax^2 + Bx), as the constant term is unnecessary due to its presence in the complementary solution. By substituting this particular solution into the differential equation and simplifying, coefficients can be determined to match the right-hand side. The final answer in the book, e^(-x)(8x^2 + 4x + 1), can be verified through this method.
ssh
Messages
17
Reaction score
0
To Solve y’’ – 2 y’ – 3y = 64 e-x x ---------------(1)
Using the method of undetermined coefficients :
The roots of the homogeneous equation are 3 and -1, so the complimentary solution is
y = c1 e3x + c2 e-x
Then the guess for the particular solution of (1) is e-x x (Ax + B)
The Answer in the book is e-x ( 8x2 + 4x +1 ).
But there is no constant term in the guess now how does it show up in the answer?
Can anyone help me with this?
Thanks
 
Physics news on Phys.org
ssh said:
To Solve y’’ – 2 y’ – 3y = 64 e-x x ---------------(1)
Using the method of undetermined coefficients :
The roots of the homogeneous equation are 3 and -1, so the complimentary solution is
y = c1 e3x + c2 e-x
Then the guess for the particular solution of (1) is e-x x (Ax + B)
The Answer in the book is e-x ( 8x2 + 4x +1 ).
But there is no constant term in the guess now how does it show up in the answer?
Can anyone help me with this?
Thanks

The second order ODE is...

$\displaystyle y^{\ ''} -2\ y^{\ '} -3\ y = 64\ x\ e^{-x}$ (1)

... and you have to find a particular solution of the form...

$\displaystyle g(x)= (a\ x^{2} + b\ x +c)\ e^{-x}$ (2)

Deriving (2) You obtain...

$\displaystyle g^{\ '}(x)= \{ b - c + (2 a - b)\ x - a\ x^{2}\}\ e^{- x}$ (3)

$\displaystyle g^{\ ''}(x)= \{ 2 (a - b) + c + (b-4 a)\ x + a x^{2}\}\ e^{-x}$ (4)

Now insert in (1) the (2), (3) and (4) and then solve for a and b and c ...

Kind regards

$\chi$ $\sigma$
 
ssh said:
To Solve y’’ – 2 y’ – 3y = 64 e-x x ---------------(1)
Using the method of undetermined coefficients :
The roots of the homogeneous equation are 3 and -1, so the complimentary solution is
y = c1 e3x + c2 e-x
Then the guess for the particular solution of (1) is e-x x (Ax + B)
The Answer in the book is e-x ( 8x2 + 4x +1 ).
But there is no constant term in the guess now how does it show up in the answer?
Can anyone help me with this?
Thanks

The $e^{-x}\cdot 1$ part of your particular solution is unnecessary, since that exact piece shows up in the complementary solution. That is, you could just absorb that part into the complementary solution. It doesn't hurt anything, but it doesn't help. Your guess for the particular solution is the correct one. Moving along:

\begin{align*}
y_{p}&=e^{-x}(Ax^{2}+Bx)\\
y_{p}'&=-e^{-x}(Ax^{2}+Bx)+e^{-x}(2Ax+B)=e^{-x}(-Ax^{2}+(2A-B)x+B)\\
y_{p}''&=-e^{-x}(-Ax^{2}+(2A-B)x+B)+e^{-x}(-2Ax+2A-B)\\
&=e^{-x}(Ax^{2}+(-4A+B)x+2A-2B).
\end{align*}
Hence,
\begin{align*}
y_{p}''-2y_{p}'-3y_{p}&=e^{-x}(Ax^{2}+(-4A+B)x+2A-2B)\\
&\quad+e^{-x}(2Ax^{2}+(-4A+2B)x-2B)\\
&\quad+e^{-x}(-3Ax^{2}-3Bx)\\
&=e^{-x}(-8Ax+2A-4B).
\end{align*}
Set this equal to the RHS of the original DE, and I think you're good to go.
 
Last edited:
Thanks
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
995
  • · Replies 1 ·
Replies
1
Views
369
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K