MHB Solving Second order non - homogeneous Differential Equation

Click For Summary
To solve the second-order non-homogeneous differential equation \( (x+1) y'' - (2x+5) y' + 2y = (x+1) e^x \), the general solution begins with finding the complementary solution of the associated homogeneous equation. The proposed form for the particular solution is \( y_1 = (Ax+B) e^x \) and \( y_2 = vy_1 \), where constants A and B need to be determined. The general solution combines the complementary solution \( y = c_1 y_1 + c_2 y_2 \) with a particular solution derived from the non-homogeneous part. The discussion emphasizes the complexity of finding the particular solution, suggesting it as an exercise for readers. The overall approach follows established methods for solving linear differential equations with variable coefficients.
ssh
Messages
17
Reaction score
0
How to solve \( (x+1) y'' - (2x+5) y' + 2y = (x+1) e^x\)

can we assume \(y_1 = (Ax+B) e^x \),
then \(y_2= vy_1​\) Is this right? then solve for A and B
Finally \( y = c_1 y_1 + c_2 y_2\)
 
Physics news on Phys.org
Are you sure you don't want to include x^2 or x^3?
 
ssh said:
How to solve \( (x+1) y'' - (2x+5) y' + 2y = (x+1) e^x\)

can we assume \(y_1 = (Ax+B) e^x \),
then \(y_2= vy_1​\) Is this right? then solve for A and B
Finally \( y = c_1 y_1 + c_2 y_2\)

The solving procedure is the same used in...

http://www.mathhelpboards.com/f17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089/

First You have to find the general solution of the incomplete equation...

$\displaystyle (x+1)\ y^{\ ''} - (2\ x + 5)\ y^{\ '} +2\ y=0$ (1)

... which has the form...

$\displaystyle y(x)= c_{1}\ u(x) + c_{2}\ v(x)$ (2)

If $u(x)$ and $v(x)$ are solutions of (1) then...

$\displaystyle (x+1)\ u^{\ ''} - (2\ x + 5)\ u^{\ '} +2\ u=0$

$\displaystyle (x+1)\ v^{\ ''} - (2\ x + 5)\ v^{\ '} +2\ v=0$ (3)

Multiplying the first of (3) by v and the second by u and do the difference we obtain...

$\displaystyle (x+1)\ (v\ u^{\ ''}-u\ v^{\ ''}) - (2\ x + 5)\ (v\ u^{\ '} -u\ v^{\ '})=0$ (4)

Now we set $\displaystyle z= v\ u^{\ '} -u\ v^{\ '}$ so that (4) becomes...

$\displaystyle z^{\ '}= \frac{2\ x+5}{x+1}$ (5)

The (5) is a first order ODE one solution of which is...

$\displaystyle z= 2\ x + 3\ \ln (x+1)$ (6)

... so that is...$\displaystyle \frac{d}{d x} (\frac{u}{v})= \frac{z}{v^{2}} = \frac{2\ x + 3\ \ln (x+1) + c_{2}}{v^{2}} \implies u= v\ \int \frac{2\ x + 3\ \ln (x+1) }{v^{2}}\ dx$ (7)

Now it is easy enough to see that $\displaystyle v= x+ \frac{5}{2}$ is solution of (1) so that from (7) we derive that...

$\displaystyle u= \ln (2\ x +5) + 2\ (x+1)\ \ln (x+1) + (2\ x+5)\ \ln (2\ x +5)$ (8)

... and the general solution of (1) is...

$\displaystyle y(x)= c_{1}\ (2\ x+5) + c_{2}\ \{(x+1)\ \ln (x+1) + (x+3)\ \ln (2\ x +5)\}$ (9)

... and the first part is completed. Now You have to search a particular solution of the complete equation... $\displaystyle (x+1)\ y^{\ ''} - (2\ x + 5)\ y^{\ '} +2\ y= (x+1)\ e^{x}$ (10)

Kind regards

$\chi$ $\sigma$
 
The procedure described in post #12 of...http://www.mathhelpboards.com/f17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089/index2.html

... may be used to find the particular solution Y(x) of the ODE proposed in this thread. The computation however is very unpleasant and the task is left as exercize to the readers (Tmi)...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K