Solving Sequence Problem with Elementary Math Concepts

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary

Discussion Overview

The discussion revolves around a sequence of fractions and the challenge of determining the position of the fifth occurrence of a specific fraction, $\dfrac{3}{7}$, within that sequence. Participants explore various methods to simplify the problem for a 9-year-old, while addressing the use of elementary math concepts, triangular numbers, and systematic searches.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Homework-related

Main Points Raised

  • Some participants suggest using elementary math concepts to explain the sequence and its structure, emphasizing the need for simplification for a young audience.
  • One participant proposes a formula involving triangular numbers to find the position of the fraction, indicating that the fraction $\dfrac{3}{7}$ can be represented as $\dfrac{15}{35}$ and provides a calculation for its position.
  • Another participant describes the sequence as consisting of blocks where the sum of the numerator and denominator is constant, detailing how to find the block containing the desired fraction.
  • Some participants express concern that the complexity of the explanations may be too advanced for a 9-year-old, suggesting that a simpler approach is necessary.
  • A later reply acknowledges the contributions of others while reiterating the need for a straightforward solution suitable for a child.

Areas of Agreement / Disagreement

Participants generally agree on the need for a simplified explanation suitable for a child, but there are multiple competing views on how best to approach the problem, with no consensus on a single method or solution.

Contextual Notes

Some participants reference mathematical concepts such as triangular numbers and systematic searches, which may not be fully accessible to a 9-year-old. The discussion reflects varying levels of mathematical complexity and understanding among participants.

Who May Find This Useful

This discussion may be useful for educators, parents, or anyone interested in teaching elementary math concepts, particularly in the context of sequences and fractions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.

So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.

Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.

So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.

Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?

Hello.(Whew)(Whew)

Let \ \dfrac{A_n}{B_m}

Let \ n=order \ number \ suscession \ numerator

Let \ x=number \ numerator

And:

Let \ m=order \ number \ suscession \ denominator

Let \ y=number \ denominator

Then:

x \ number \ position=\dfrac{n^2+(2x-1)n+x^2-3x+2}{2}. (1)

y \ number \ position=\dfrac{m^2+(2y-3)m+y^2-y+2}{2}. (2)

Making: x=m \ and \ y=n \rightarrow{}x \ number \ position=y \ number \ position

Example:

\dfrac{3}{7}=\dfrac{15}{35}

therefore:

x=15 \ and \ y=35

For (1): x \ number \ position=\dfrac{35^2+(2*15-1)35+15^2-3*15+2}{2}=1211

Same:

For (2): y \ number \ position=\dfrac{15^2+(2*35-3)15+35^2-35+2}{2}=1211

I had done a 'programme', showing how works this topic, but I have not been able to attach the file of Excel.(Headbang)Regards.
 
anemone said:
Hi MHB,

My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.

So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.

Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?

Let's suppose to call $a_{n}$ the sequence at numerator and $b_{n}$ the sequence at denominator. It will be $a_{n}=3$ for $n = 4\ m + \frac {(m-1)\ (m-2)}{2}, m=1,2,...$ and $b_{n}=7$ for $k = 7\ (k+3) + \frac{(k-1)\ (k-2)}{2}, k=1,2,...$. By systematic search You find that is $a_{n}=3,\ b_{n} = 7$ for $k=3,\ m=7, n=43 $ and no other values of n. The succcesive search is dedicated to find the value of n for which is $a_{n}=6,\ b_{n}= 14$ and then the value of n for which $a_{n}=9,\ b_{n} = 21$ and so on, so that the solution of the problem is the value of n for which $a_{n}=15,\ b_{n}=35$. That is a little hard task for an old wolf like me but I'm sure that You will find the number n with no difficulties (Wink)...

Kind regards

$\chi$ $\sigma$
 
anemone said:
Hi MHB,

My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.

So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.

Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?
I think this is a hard problem for a nine-year-old. The first step is to see that the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$ is the fraction$\dfrac{3\times5}{7\times5} = \dfrac{15}{35}.$

The given sequence consists of blocks of terms in which the sum of the numerator and denominator is constant. The series starts with a single term for which that sum is $2$. Then there is a block of two terms where the sum is $3$, a block of three terms where the sum is $4$, and so on. Within each block, the terms are ordered by their denominator. The first term in the block has denominator $1$, then $2$, and so on.

For the fraction $\dfrac{15}{35}$, the sum of the numerator and denominator is $15+35 = 50$, so it lies in the $49$th block. It will be the $35$th term in that block, so it will be $35$ places beyond the end of the $48$th block.

At this stage, I think that you are inevitably going to get drawn into the realm of triangular numbers. Somehow or other, you have to convince yourself that the $48$th block ends at the term whose position in the sequence is $\frac12\times 48\times 49 = 1176.$ It then follows that the fraction $\dfrac{15}{35}$ occurs at place $1176 + 35 = 1211.$

The average nine-year-old would probably find that argument too difficult to follow. But I am sure that a relative of anemone would relish it. (Wink)

Edit. To convince someone inexperienced in algebra to believe the formula $\frac12n(n+1)$ for the $n$th triangular number, I would draw an $n\times(n+1)$ array like this:
Code:
 + - - - - -
 + + - - - -
 + + + - - -
 + + + + - -
 + + + + + -
You can see from this that half of the $n(n+1)$ elements are $+$s, and also that the number of $+$s is $1+2+3+\ldots + n$.
 
Last edited:
Hi mente oscura and chisigma,

Thanks for your replies and I understand what both of you are saying, but for this problem, I have to solve it using the simplest way possible since it is a problem for my nephew, not me...if it were up to me to solve it, then I would attack it as I would attack a ferocious tiger in the forest, hehehe...:)

Hi Opalg,

Thank you so so much for the easy to follow explanation! I appreciate it from the bottom of my heart. I will also tell my nephew who Opalg is and also let him know you are someone I hold in the highest esteem. (Sun)

You can be sure that I am your number one "fan" on earth! (heart)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
10
Views
3K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K