I Solving Spinorial Maxwell's Equations with Wald

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Maxwell's equations
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I'm trying to figure out how to do these sorts of calculations but I'm having a lot of trouble figuring out where to start. Take problem 3) of Chapter 13 of Wald, i.e. given that a real antisymmetric tensor ##F_{ab}##, corresponding to the spinorial tensor ##F_{AA' BB'}## by the map ##{\sigma^a}_{AA'}##, can be written as\begin{align*}
F_{AA' BB'} = \phi_{AB} \bar{\epsilon}_{A'B'} + \bar{\phi}_{A'B'} \epsilon_{AB}
\end{align*}to show that ##\partial^a F_{ab} = 0## and ##\partial_{[a} F_{bc]} = 0## if and only if ##\phi^{AB}## satisfies ##\partial_{A_1' A_1} \phi^{A_1, \dots, A_n} = 0##. I've really not much idea where to start; the spinor equivalent of the first Maxwell equation should be\begin{align*}
\partial^{AA'} F_{AA'BB'} = \phi_{AB} \partial^{AA'} \bar{\epsilon}_{A'B'} + \bar{\epsilon}_{A'B'} \partial^{AA'} \phi_{AB} + \bar{\phi}_{A'B'} \partial^{AA'} \epsilon_{AB} + \epsilon_{AB} \partial^{AA'} \bar{\phi}_{A'B'} = 0
\end{align*}In the text it's mentioned that ##\partial_{AA'} \epsilon_{BC} = 0##, but no proof is given. Maybe as a starter, how can I show that it follows from the definition ##\partial_{\Lambda \Lambda'} \epsilon_{\Sigma \Omega} = \sum_{\mu} {\sigma^{\mu}}_{\Lambda \Lambda'} \dfrac{\partial \epsilon_{\Sigma \Omega}}{\partial x^{\mu}}##? I reckon its simply because ##\epsilon^{\Sigma \Omega} = o^\Sigma \iota^\Omega - \iota^\Sigma o^\Omega## is independent of the spacetime coordinates, with ##\{o, \iota\}## being a fixed basis of ##W##...?
 
Last edited:
Physics news on Phys.org
Yes, the components are constant, so all the derivatives will be zero. In curved space-time you need the theorem that there is a unique connection with the given properties, one of which is that the ##\epsilon## has zero covariant derivative.
 
  • Like
Likes ergospherical
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top