I Solving Spinorial Maxwell's Equations with Wald

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Maxwell's equations
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I'm trying to figure out how to do these sorts of calculations but I'm having a lot of trouble figuring out where to start. Take problem 3) of Chapter 13 of Wald, i.e. given that a real antisymmetric tensor ##F_{ab}##, corresponding to the spinorial tensor ##F_{AA' BB'}## by the map ##{\sigma^a}_{AA'}##, can be written as\begin{align*}
F_{AA' BB'} = \phi_{AB} \bar{\epsilon}_{A'B'} + \bar{\phi}_{A'B'} \epsilon_{AB}
\end{align*}to show that ##\partial^a F_{ab} = 0## and ##\partial_{[a} F_{bc]} = 0## if and only if ##\phi^{AB}## satisfies ##\partial_{A_1' A_1} \phi^{A_1, \dots, A_n} = 0##. I've really not much idea where to start; the spinor equivalent of the first Maxwell equation should be\begin{align*}
\partial^{AA'} F_{AA'BB'} = \phi_{AB} \partial^{AA'} \bar{\epsilon}_{A'B'} + \bar{\epsilon}_{A'B'} \partial^{AA'} \phi_{AB} + \bar{\phi}_{A'B'} \partial^{AA'} \epsilon_{AB} + \epsilon_{AB} \partial^{AA'} \bar{\phi}_{A'B'} = 0
\end{align*}In the text it's mentioned that ##\partial_{AA'} \epsilon_{BC} = 0##, but no proof is given. Maybe as a starter, how can I show that it follows from the definition ##\partial_{\Lambda \Lambda'} \epsilon_{\Sigma \Omega} = \sum_{\mu} {\sigma^{\mu}}_{\Lambda \Lambda'} \dfrac{\partial \epsilon_{\Sigma \Omega}}{\partial x^{\mu}}##? I reckon its simply because ##\epsilon^{\Sigma \Omega} = o^\Sigma \iota^\Omega - \iota^\Sigma o^\Omega## is independent of the spacetime coordinates, with ##\{o, \iota\}## being a fixed basis of ##W##...?
 
Last edited:
Physics news on Phys.org
Yes, the components are constant, so all the derivatives will be zero. In curved space-time you need the theorem that there is a unique connection with the given properties, one of which is that the ##\epsilon## has zero covariant derivative.
 
  • Like
Likes ergospherical
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top