I Solving Spinorial Maxwell's Equations with Wald

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Maxwell's equations
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I'm trying to figure out how to do these sorts of calculations but I'm having a lot of trouble figuring out where to start. Take problem 3) of Chapter 13 of Wald, i.e. given that a real antisymmetric tensor ##F_{ab}##, corresponding to the spinorial tensor ##F_{AA' BB'}## by the map ##{\sigma^a}_{AA'}##, can be written as\begin{align*}
F_{AA' BB'} = \phi_{AB} \bar{\epsilon}_{A'B'} + \bar{\phi}_{A'B'} \epsilon_{AB}
\end{align*}to show that ##\partial^a F_{ab} = 0## and ##\partial_{[a} F_{bc]} = 0## if and only if ##\phi^{AB}## satisfies ##\partial_{A_1' A_1} \phi^{A_1, \dots, A_n} = 0##. I've really not much idea where to start; the spinor equivalent of the first Maxwell equation should be\begin{align*}
\partial^{AA'} F_{AA'BB'} = \phi_{AB} \partial^{AA'} \bar{\epsilon}_{A'B'} + \bar{\epsilon}_{A'B'} \partial^{AA'} \phi_{AB} + \bar{\phi}_{A'B'} \partial^{AA'} \epsilon_{AB} + \epsilon_{AB} \partial^{AA'} \bar{\phi}_{A'B'} = 0
\end{align*}In the text it's mentioned that ##\partial_{AA'} \epsilon_{BC} = 0##, but no proof is given. Maybe as a starter, how can I show that it follows from the definition ##\partial_{\Lambda \Lambda'} \epsilon_{\Sigma \Omega} = \sum_{\mu} {\sigma^{\mu}}_{\Lambda \Lambda'} \dfrac{\partial \epsilon_{\Sigma \Omega}}{\partial x^{\mu}}##? I reckon its simply because ##\epsilon^{\Sigma \Omega} = o^\Sigma \iota^\Omega - \iota^\Sigma o^\Omega## is independent of the spacetime coordinates, with ##\{o, \iota\}## being a fixed basis of ##W##...?
 
Last edited:
Physics news on Phys.org
Yes, the components are constant, so all the derivatives will be zero. In curved space-time you need the theorem that there is a unique connection with the given properties, one of which is that the ##\epsilon## has zero covariant derivative.
 
  • Like
Likes ergospherical
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top