Sorry for the long post (there is a lot of ##\LaTeX## here)...
To address
@aliens123 's question on the
Electric Field seen by an observer in motion, this may help.
It's based on some old notes of mine that I've been meaning to revise.
(It includes other pieces that are not essential to this question.)Consider two observers:
Vic (with 4-velocity ##v^a##) and
Will (with 4-velocity ##w^a##).
Some formula to set the scene...
\def\MACROS{}<br />
\def\hv{\hat v}<br />
\def\hw{\hat w}<br />
\def\hvx{\hat {\bar x}}<br />
\def\hwx{\hat {\tilde x}}<br />
\def\hvy{\hat {\bar y}}<br />
\def\hwy{\hat {\tilde y}}<br />
\def\hvz{\hat {\bar z}}<br />
\def\hwz{\hat {\tilde z}}<br />
\def\vE{\bar E}<br />
\def\vB{\bar B}<br />
\def\vBs{{}^*\bar B}<br />
\def\wE{\tilde E}<br />
\def\wB{\tilde B}<br />
\def\wBs{{}^*\tilde B}<br />
\def\vW{\bar W}<br />
[We are using the abstract-index notation.]
Given an antisymmetric tensor ##F_{ab}##, a metric ##g_{ab}## with signature ##(+,-,-,-)## [different from Wald's], and a unit timelike vector ##\hv^a## (##g_{ab} \hv^a \hv^b=+1##),
define
##E_a=F_{ab} \hv^b## (note: ##E_a \hv^a=0##)
and
##B_a={}^*F_{ab} \hv^b=\frac{1}{2} \epsilon_{abcd}F^{cd}\hv^b## (note: ##B_a \hv^a=0##).
Thus, the vectors ##E^a=g^{ab}E_b## and ##B^a=g^{ab}B_b## are orthogonal to ##\hv^a##.
For convenience, we define two antisymmetric tensors ##E_{ab}=2E_{[a}\hv_{b]}## and ##B_{ab}=2B_{[a}\hv_{b]}.##
Then ##{}^* B_{ab}=\epsilon_{abcd} B^c \hv^d## and ##{}^* E_{ab}=\epsilon_{abcd} E^c \hv^d##.
Note:
E_{ab}\hv^b=E_a \hv_b \hv^b - E_b \hv_a \hv^b= E_a (\hv_b \hv^b) - 0 =E_a \quad since \hv_b \hv^b =1
(so, ##B_{ab}\hv^b=B_a##, ##E_{ab}\hv^b=E_a##, ##{}^* B_{ab}\hv^b=0##, ##{}^*E_{ab}\hv^b=0##).
Thus, $$F_{ab}=E_{ab}-{}^*B_{ab}$$
since ##E_a=(E_{ab}-{}^*B_{ab})\hv^b## and ##B_a=({}^*E_{ab}-{}^{**}B_{ab})\hv^b=({}^*E_{ab}+B_{ab})\hv^b##
If ##F_{ab}## is a Maxwell field, then ##E_a## and ##B_a## are the electric and magnetic parts of the field according to an observer Vic with four-velocity ##\hv^a## (a future-directed unit timelike vector).
The main question:
What are the electric and magnetic parts according to another observer Will with four-velocity ##\hw^a##?
(I'm going to work on the Electric part.)
Our goal is to
compute Will's components of Will's electric field (and magnetic field)
in terms of Vic's components of Vic's electric and magnetic field.
(This is essentially the Lorentz Transformation of the Electric and Magnetic Fields.)
To distinguish the observer's electric and magnetic parts
and to emphasize the observer-dependence of their decompositions of the Maxwell field tensor,
we refer to
- Vic's parts with a bar as ##\vE_a## , ##\vB_a##, ##\vE_{ab}## and ##\vB_{ab}##
and
- Will's parts with a tilde as ##\wE_a## , ##\wB_a##, ##\wE_{ab}## and ##\wB_{ab}##.
- [To emphasize the observer-dependent decomposition,
we could have used ##'## and ##''##... but not primed and unprimed.]
The Electric Field
We will compute the electric part ##\wE_a## of the field tensor according to Will.
Will's 4-velocity can be described by Vic as follows:
$$\hw^a= \gamma \hv^a + \gamma \vW^a,$$
where ##\vW^a## is the spatial-velocity of Will according to Vic (##g_{ab}\hv^a\vW^b=0##), which has square-norm ##W^2=-\vW^a\vW_a (=\vec \vW\cdot \vec \vW)## and ##\gamma=\frac{1}{\sqrt{1-W^2}}##.
(I'll use the bar and tilde notation on the 4-vectors, and on other quantities whose observer-dependence decompositions are to be emphasized. I won't use it on ##\gamma##.)
So, we have the
Electric Field according to Will (expressed in terms of quantities according to Vic)...
$$\begin{eqnarray*}
\wE_a
&=& F_{ab}\hw^b\\
&=& F_{ab}(\gamma \hv^b + \gamma \vW^b)\\
&=& \gamma (\vE_{a} + F_{ab}\vW^b )\\
&=& \gamma (\vE_{a} + (\vE_{ab}-\vBs_{ab})\vW^b )\\
&=& \gamma (\vE_{a} + (\vE_a \hv_b \vW^b - \vE_b \hv_a \vW^b) -
\epsilon_{abcd} \vB^c \hv^d \vW^b )\\
&=& \gamma (\vE_{a} + (\quad 0\quad ) + (-\vE_b \vW^b) \hat v_a -
\epsilon_{abcd} \vB^c \hv^d \vW^b )\\
&=& \gamma (\vE_{a} - (\vE_b \vW^b) \hv_a -
(-1)^3 \hv^d\epsilon_{dabc} \vW^b \vB^c )\\
&=& \gamma (\vE_{a} - (\vE_b \vW^b) \hv_a \ \ + \
\hv^d\epsilon_{dabc} \vW^b \vB^c )\\
&=& -\gamma (\vE_b \vW^b) \hv_a + \gamma (\vE_{a} +
\hv^d\epsilon_{dabc} \vW^b \vB^c )
\end{eqnarray*}$$
where we have isolated the component of Will's electric part ##\wE_a## that is parallel to Vic's 4-velocity; the second term is purely-spatial according to Vic.
Recall: Our goal is to
compute Will's components of Will's electric field (and magnetic field)
in terms of Vic's components of Vic's electric and magnetic field.
A special case: ##W^a=W\hvx^a##
Take the special case where Will's spatial-velocity is along Vic's ##x##-axis, which we write as ##W^a=W\hvx^a##.
Recalling the form of the Lorentz Transformation for relative motion along the ##x##-axis,
\begin{eqnarray*}
\hat t'^a &=& \gamma(\hat t^a+V_{rel}\ \hat x^a) \\
\hat x'^a &=& \gamma(V_{rel}\ \hat t^a+ \hat x^a)\\
\hat y'^a &=& \hat y^a\\
\hat z'^a &=& \hat z^a
\end{eqnarray*} we express this transformation with our notation encoding the observer 4-velocities
\begin{eqnarray*}
\hw^a &=& \gamma(\hv^a+W\hvx^a)\\
\hwx^a &=& \gamma(W\hv^a+\hvx^a)\\
\hwy^a &=& \hvy^a\\
\hwz^a &=& \hvz^a.
\end{eqnarray*}
Due to our signature ##(+,-,-,-)## convention,
define ##\wE_{(\tilde x)}=-\hwx^a \wE_a = \hwx \cdot \vec \wE## to be Will's ##\tilde x##-component of the electric field ##\wE_a## that Will measures.
Similarly,
define ##\vE_{(\bar x)}=-\hvx^a \vE_a = \hvx \cdot \vec \vE## to be Vic's ##\bar x##-component of the electric field ##\vE_a## that Vic measures.We calculate
Will's ##x##-component of Will's Electric Field (in terms of quantities according to Vic):
\begin{eqnarray*}
\hwx^a \wE_a
&=&
\gamma(W\hv^a+\hvx^a)
\left(
-\gamma (\vE_b \vW^b) \hv_a \ \ + \gamma (\vE_{a} +
\hv^d\epsilon_{dabc} \vW^b \vB^c )
\right)
\\
&=&
\gamma(W\hv^a+\hvx^a)
\left( -\gamma W(\vE_b \hvx^b) \hv_a + \gamma (\vE_{a} +
W\hv^d\epsilon_{dabc} \hvx^b \vB^c ) )\right)
\\
&=&
\gamma^2 \left[ -W^2 (\vE_b \hvx^b) \hv^a\hv_a\ + 0 + 0 +
\hvx^a \vE_a + \hvx^a W\hv^d\epsilon_{dabc} \hvx^b \vB^c \right]\\
\wE_{(\tilde x)}
&\stackrel{*}{=}& \gamma^2 \left[ -W^2 \vE_{(\bar x)} \qquad \quad\ + 0 + 0 +\ \vE_{(\bar x)} \ + \qquad 0 \qquad\right]
\\
&=& \gamma^2 \left[ -W^2 +1 \right] \vE_{(\bar x)}
\\
\wE_{(\tilde x)}
&=& \vE_{(\bar x)}
\end{eqnarray*}
(The * indicates that we have canceled the common factor ##(-1)## on both sides that arose in our definition of the spatial-components (as the dot product of two spacelike vectors) in this ##(+,-,-,-)## convention.)
For the
##y##- and ##z##-components of the Electric Field, we have
\begin{eqnarray*}
\hwy^a \wE_a
&=& \hvy^a
\left(
-\gamma (\vE_b \vW^b) \hv_a \ \ + \gamma (\vE_{a} +
\hv^d\epsilon_{dabc} \vW^b \vB^c )
\right)
\\
&=& \gamma \left[ \qquad\quad 0 \qquad\quad\ + \hvy^a \vE_a
+ \hvy^a \hv^d\epsilon_{dabc} \vW^b B^c \right]
\\
\wE_{(\tilde y)}
&\stackrel{*}{=}& \gamma \left[ \phantom{ \qquad\quad 0 \qquad\quad\ +\ } \vE_{(\bar y)} + ( \vW_{(\bar z)} \vB_{(\bar x)} - \vW_{(\bar x)} \vB_{(\bar z)}) \right]\\
\wE_{(\tilde y)}
&=& \gamma (\vE_{(\bar y)}- W \vB_{(\bar z)})
\end{eqnarray*}
\begin{eqnarray*}
\hwz^a \wE_a
&=& \hvz^a
\left(
-\gamma (\vE_b \vW^b) \hv_a \ \ + \gamma (\vE_{a} +
\hv^d\epsilon_{dabc} \vW^b \vB^c )
\right)
\\
&=& \gamma \left[ \qquad\quad 0 \qquad\quad\ + \hvz^a \vE_a
+ \hvz^a \hv^d\epsilon_{dabc} \vW^b B^c \right]
\\
\wE_{(\tilde z)}
&\stackrel{*}{=}& \gamma \left[ \phantom{\qquad\quad 0 \qquad\quad\ +\ \ }
\vE_{(\bar z)} + ( \vW_{(\bar x)} \vB_{(\bar y)} - \vW_{(\bar y)} \vB_{(\bar x)})
\right]\\
\wE_{(\tilde z)}
&=& \gamma (\vE_{(\bar z)}+ W \vB_{(\bar y)})\\
\end{eqnarray*}
The Lorentz transformation of the Electric Field in 3-vector form
In the following, my goal is motivation---not an exhaustive proof.
Let's collect the results
\begin{eqnarray*}
\wE_{(\tilde x)}
&=& \vE_{(\bar x)}
\\
\wE_{(\tilde y)}
&=& \gamma (\vE_{(\bar y)}- W \vB_{(\bar z)})
\\
\wE_{(\tilde z)}
&=& \gamma (\vE_{(\bar z)}+ W \vB_{(\bar y)})
\end{eqnarray*}
Let's rewrite this in a way to suggest a more general form,
resurrecting some terms that evaluated to zero.
Note what we have to do to the x-component in order to introduce ##\gamma \vE^a##.
\begin{eqnarray*}
\wE_{(\tilde x)}
&=& \gamma \vE_{(\bar x)} - ( \gamma -1) \vE_{(\bar x)}
\\
\wE_{(\tilde y)}
&=& \gamma \left(\vE_{(\bar y)} +
( \vW_{(\bar z)} \vB_{(\bar x)} - \vW_{(\bar x)} \vB_{(\bar z)})
\right)
\\
\wE_{(\tilde z)}
&=& \gamma \left(\vE_{(\bar z)} +
( \vW_{(\bar x)} \vB_{(\bar y)} - \vW_{(\bar y)} \vB_{(\bar x)})
\right)
\end{eqnarray*}
...and a little more suggestive rewriting (without proof)...
\begin{eqnarray*}
\wE_{(\tilde x)}
&=& \gamma \vE_{(\bar x)} - ( \gamma -1) \vE_{(\bar x)}
\\
\wE_{(\tilde y)}
&=& \gamma \left(\vE_{(\bar y)} +
( \vec \vW \times \vec \vB )_{(\bar y)}
\right)
\\
\wE_{(\tilde z)}
&=& \gamma \left(\wE_{(\bar z)} +
( \vec \vW \times \vec \vB )_{(\bar z)}
\right)
\end{eqnarray*}
Recall that the relative-velocity was along the ##\bar x##-direction: ##\vW^a = W\hvx^a##.
(More precisely, Vic's ##\hv\hvx##-plane coincides with Will's ##\hw\hwx##-plane.)
So, by symmetry, we expect (without proof)...
\begin{eqnarray*}
\wE_{(\tilde x)}
&=& \gamma \left(\wE_{(\bar x)} + ( \vec \vW \times \vec \vB )_{(\bar x)}\right) - ( \gamma -1) \vE_{(\bar x)}
\\
\wE_{(\tilde y)}
&=& \gamma \left(\wE_{(\bar y)} +
( \vec \vW \times \vec \vB )_{(\bar y)}
\right)
\\
\wE_{(\tilde z)}
&=& \gamma \left(\wE_{(\bar z)} +
( \vec \vW \times \vec \vB )_{(\bar z)}
\right)
\end{eqnarray*}
or, more compactly,
\begin{eqnarray*}
\vec \wE=\gamma(\vec {\vE} + (\vec\vW \times \vec\vB) ) -(\gamma-1)\vE_{(\hvx)}\hvx
\end{eqnarray*}
Note that in the derivation of ##\wE_{(\tilde x)}##,
the quantity ##\vE_{(\bar x)}## on the right-hand-side is really the component of ##\vE^a## along the ##\vW^a##-direction (using the unit -vector ##\hat \vW^a##).
Since we can write
$$\vE_{(\bar x)}
=\vE_{(|| \hvx )}
= \hvx \cdot \vec \vE $$
and
$$\vE_{(\bar x)}\hvx
=\vE_{(|| \hvx )} \hvx
= \left( \hvx \cdot \vec \vE\right) \hvx, $$
we can write this more generally for an arbitrarily-directed ##\vec\vW## as
$$\vE_{(|| \vW)} = - \hat \vW^a \vE_a = \hat\vW \cdot \vec \vE $$
so that
$$\vE_{(|| \vW)}\hat \vW = \left(\hat \vW \cdot \vec \vE\right) \hat\vW $$
Thus, we obtain the more general expression
\begin{eqnarray*}
\vec \wE=\gamma(\vec {\vE} + (\vec\vW \times \vec\vB) ) -(\gamma-1)\left(\hat \vW \cdot \vec \vE\right) \hat\vW
\end{eqnarray*} which agrees with the last set of equations for the Electric Field in OP's question (
Electric Field seen by an observer in motion ).
The magnetic field is handled in a similar way... likely easier using (or invoking) ##B_a={}^*F_{ab} \hv^b##.