Solving System of Equations Using Cramer's Rule - Problem #42 | Jan 14th, 2013

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on solving a system of equations using Cramer's Rule, specifically for the equations: x - 3y + 3z = -4, 2x + 3y - z = 15, and 4x - 3y - z = 19. The determinants were calculated step-by-step, resulting in the solutions x = 5, y = 1, and z = -2. The correct solutions were provided by members MarkFL, soroban, and Sudharaka, with soroban detailing the determinant calculations for D, Dx, Dy, and Dz.

PREREQUISITES
  • Understanding of Cramer's Rule
  • Knowledge of determinants in linear algebra
  • Ability to solve linear equations
  • Familiarity with matrix notation
NEXT STEPS
  • Study advanced applications of Cramer's Rule in larger systems of equations
  • Learn about matrix inversion as an alternative to Cramer's Rule
  • Explore numerical methods for solving systems of equations
  • Investigate the implications of determinant properties in linear transformations
USEFUL FOR

Students, educators, and professionals in mathematics, engineering, and computer science who are looking to deepen their understanding of linear algebra and methods for solving systems of equations.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Consider the three equtions:

[math]x-3y+3z=-4[/math]
[math]2x+3y-z=15[/math]
[math]4x-3y-z=19[/math]

Using Cramer's Rule, solve the system. Show your work, especially how you calculate the determinants.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) soroban
3) Sudharaka

Solution (from soroban): [sp] Solve by Cramer's Rule: .[/color]$\begin{array}{ccc}x - 3y + 3 &=& \text{-}4 \\ 2x + 3y - z &=& 15 \\ 4x - 3y - z &=& 19 \end{array}$$D \:=\:\begin{vmatrix}1&\text{-}3&3 \\ 2&3&\text{-}1 \\ 4&\text{-}3&\text{-}1 \end{vmatrix} \;=\;1\begin{vmatrix}3&\text{-}1\\\text{-}3&\text{-}1\end{vmatrix} - (\text{-}3)\begin{vmatrix}2&\text{-}1 \\ 4&\text{-}1\end{vmatrix} + 3\begin{vmatrix}2&3\\4&\text{-}3\end{vmatrix} $

. . [/color]$=\;1(\text{-}3-3) + 3(\text{-}2+4) + 3(\text{-}6-12) \;=\;1(\text{-}6) + 3(2) + 3(\text{-}18)$

. . [/color]$=\;\text{-}6 + 6 - 54 \quad\Rightarrow\quad \boxed{D \:=\:\text{-}54} $$D_x \;=\;\begin{vmatrix}\text{-}4&\text{-}3&3 \\ 15 & 3&\text{-}1 \\ 19&\text{-}3&\text{1}1\end{vmatrix} \;=\;\text{-}4\begin{vmatrix}3&\text{-}1\\\text{-}3&\text{-}1\end{vmatrix} - (\text{-}3)\begin{vmatrix}15&\text{-}1\\19&\text{-}1\end{vmatrix} + 3\begin{vmatrix}15&3\\19&\text{-}3\end{vmatrix}$

. . . [/color]$=\;\text{-}4(\text{-}3-3) + 34(\text{-}15 + 19) + 3(\text{-}45-57)$

. . . [/color]$=\; \text{-}4(\text{-}6) + 3(4) + 3(\text{-}102) \;=\; 24 + 12 - 306 \;=\;\text{-}270$

$x \;=\;\dfrac{D_x}{D} \;=\;\dfrac{\text{-}270}{\text{-}54} \quad\Rightarrow\quad \boxed{x \:=\:5}$$D_y \;=\;\begin{vmatrix} 1&\text{-}4&3 \\ 2 &15&\text{-}1 \\ 4&19&\text{-}1\end{vmatrix} \;=\;1\begin{vmatrix}15&\text{-}1\\19&\text{-}1\end{vmatrix} - (\text{-}4)\begin{vmatrix}2&\text{-}1\\4&\text{-}1\end{vmatrix} + 3\begin{vmatrix}2&15\\4&19\end{vmatrix}$

. . . [/color]$=\;1(\text{-}15+19) + 4(\text{-}2 + 4) + 3(38-60)$

. . . [/color]$=\; 1(4) + 4(2) + 3(\text{-}22) \;=\; 4 + 8 - 66 \;=\;\text{-}54$

$y \;=\;\dfrac{D_y}{D} \;=\;\dfrac{\text{-}54}{\text{-}54} \quad\Rightarrow\quad \boxed{y \:=\:1}$ $D_z \;=\;\begin{vmatrix}1&\text{-}3&\text{-}4 \\ 2&3&15 \\ 4&\text{-}3&19\end{vmatrix} \;=\; 1\begin{vmatrix}3&15\\\text{-}3&19
\end{vmatrix} - (\text{-}3)\begin{vmatrix}2&15\\4&19\end{vmatrix} - 4\begin{vmatrix}2&3\\4&\text{-}3\end{vmatrix}$

. . . [/color]$=\;1(57+45) + 3(38-60) - 4(\text{-}6-12)$

. . . [/color]$=\; 1(102) + 3(\text{-}22) - 4(\text{-}18) \;=\; 102 - 66 + 72 \;=\;108$

$z \;=\;\dfrac{D_z}{D} \;=\;\dfrac{108}{\text{-}54} \quad\Rightarrow\quad \boxed{z \:=\:\text{-}2}$
[/size][/sp]
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K