Solving System of Equations Using Cramer's Rule - Problem #42 | Jan 14th, 2013

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The system of equations is solved using Cramer's Rule, resulting in the values x = 5, y = 1, and z = -2. The determinant D was calculated as -54, which is essential for finding the variable values. Determinants D_x, D_y, and D_z were computed to be -270, -54, and 108, respectively. Each variable's value is derived by dividing the respective determinant by D. The correct solutions were confirmed by several members of the forum.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Consider the three equtions:

[math]x-3y+3z=-4[/math]
[math]2x+3y-z=15[/math]
[math]4x-3y-z=19[/math]

Using Cramer's Rule, solve the system. Show your work, especially how you calculate the determinants.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) soroban
3) Sudharaka

Solution (from soroban): [sp] Solve by Cramer's Rule: .[/color]$\begin{array}{ccc}x - 3y + 3 &=& \text{-}4 \\ 2x + 3y - z &=& 15 \\ 4x - 3y - z &=& 19 \end{array}$$D \:=\:\begin{vmatrix}1&\text{-}3&3 \\ 2&3&\text{-}1 \\ 4&\text{-}3&\text{-}1 \end{vmatrix} \;=\;1\begin{vmatrix}3&\text{-}1\\\text{-}3&\text{-}1\end{vmatrix} - (\text{-}3)\begin{vmatrix}2&\text{-}1 \\ 4&\text{-}1\end{vmatrix} + 3\begin{vmatrix}2&3\\4&\text{-}3\end{vmatrix} $

. . [/color]$=\;1(\text{-}3-3) + 3(\text{-}2+4) + 3(\text{-}6-12) \;=\;1(\text{-}6) + 3(2) + 3(\text{-}18)$

. . [/color]$=\;\text{-}6 + 6 - 54 \quad\Rightarrow\quad \boxed{D \:=\:\text{-}54} $$D_x \;=\;\begin{vmatrix}\text{-}4&\text{-}3&3 \\ 15 & 3&\text{-}1 \\ 19&\text{-}3&\text{1}1\end{vmatrix} \;=\;\text{-}4\begin{vmatrix}3&\text{-}1\\\text{-}3&\text{-}1\end{vmatrix} - (\text{-}3)\begin{vmatrix}15&\text{-}1\\19&\text{-}1\end{vmatrix} + 3\begin{vmatrix}15&3\\19&\text{-}3\end{vmatrix}$

. . . [/color]$=\;\text{-}4(\text{-}3-3) + 34(\text{-}15 + 19) + 3(\text{-}45-57)$

. . . [/color]$=\; \text{-}4(\text{-}6) + 3(4) + 3(\text{-}102) \;=\; 24 + 12 - 306 \;=\;\text{-}270$

$x \;=\;\dfrac{D_x}{D} \;=\;\dfrac{\text{-}270}{\text{-}54} \quad\Rightarrow\quad \boxed{x \:=\:5}$$D_y \;=\;\begin{vmatrix} 1&\text{-}4&3 \\ 2 &15&\text{-}1 \\ 4&19&\text{-}1\end{vmatrix} \;=\;1\begin{vmatrix}15&\text{-}1\\19&\text{-}1\end{vmatrix} - (\text{-}4)\begin{vmatrix}2&\text{-}1\\4&\text{-}1\end{vmatrix} + 3\begin{vmatrix}2&15\\4&19\end{vmatrix}$

. . . [/color]$=\;1(\text{-}15+19) + 4(\text{-}2 + 4) + 3(38-60)$

. . . [/color]$=\; 1(4) + 4(2) + 3(\text{-}22) \;=\; 4 + 8 - 66 \;=\;\text{-}54$

$y \;=\;\dfrac{D_y}{D} \;=\;\dfrac{\text{-}54}{\text{-}54} \quad\Rightarrow\quad \boxed{y \:=\:1}$ $D_z \;=\;\begin{vmatrix}1&\text{-}3&\text{-}4 \\ 2&3&15 \\ 4&\text{-}3&19\end{vmatrix} \;=\; 1\begin{vmatrix}3&15\\\text{-}3&19
\end{vmatrix} - (\text{-}3)\begin{vmatrix}2&15\\4&19\end{vmatrix} - 4\begin{vmatrix}2&3\\4&\text{-}3\end{vmatrix}$

. . . [/color]$=\;1(57+45) + 3(38-60) - 4(\text{-}6-12)$

. . . [/color]$=\; 1(102) + 3(\text{-}22) - 4(\text{-}18) \;=\; 102 - 66 + 72 \;=\;108$

$z \;=\;\dfrac{D_z}{D} \;=\;\dfrac{108}{\text{-}54} \quad\Rightarrow\quad \boxed{z \:=\:\text{-}2}$
[/size][/sp]
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K