I Solving the Difficult Integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Dx Integral
Click For Summary
The integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx## presents challenges, particularly for ##a=1##. A suggested approach involves expressing the sine function using complex exponentials, leading to integrals of the form ##I_n(c) = \int_0^\infty x^n e^{cx}\,dx##. Through integration by parts, a recursive relationship is established, allowing for the evaluation of the integral in terms of factorials and complex variables. An alternative method highlights the imaginary part of the exponential function to simplify the integral further. This discussion emphasizes the utility of complex analysis in solving difficult integrals.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Anyone have some ideas to approach the integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##?
 
Physics news on Phys.org
ergospherical said:
Anyone have some ideas to approach the integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##?

Using \sin ax = \frac1{2i}(e^{iax} - e^{-iax}) we express the integral as a sum of integrals of the form I_n(c) = \int_0^\infty x^n e^{cx}\,dx for complex c with \operatorname{Re}(c) &lt; 0. Then integrating by parts for n &gt; 0 we obtain <br /> \begin{split}<br /> I_n(c) &amp;= \left[\frac 1c x^ne^{cx}\right]_0^\infty - \frac{n}{c}I_{n-1}(c) \\<br /> &amp;= -\frac nc I_{n-1}(c)<br /> \end{split} and thus <br /> I_n(c) = (-1)^n\frac{n!}{c^n}I_0(c). Then <br /> \begin{split}<br /> \int_)^\infty x^{n+1}e^{-x} \sin ax\,dx &amp;= <br /> \frac {I_{n+1}(-1+ai) - I_{n+1}(-1-ai)}{2i} \\<br /> &amp;= \frac{(-1)^{n+1}(n+1)!}{2i}\left(\frac{I_0(-1+ai)}{(-1+ai)^{n+1}} - \frac{I_0(-1-ai)}{(-1-ai)^{n+1}}\right).\end{split}
 
  • Like
Likes ergospherical, topsquark and jedishrfu
To add to pasmith's idea:

Or, slightly more simply, use ##sin(ax) = Im[ e^{iax}]##.

Then
##\displaystyle \int_0^{\infty} x^{n+1} e^{-x} \, sin(ax) \, dx = Im \left [ \int_0^{\infty} x^{n+1} e^{-x + iax} \, dx \right ]##

-Dan
 
Last edited:
topsquark said:
Or, slightly more simply, use ##sin(ax) = Im[ e^{ia}]##.
Or perhaps ##sin(ax) = Im[ e^{iax}]##?
 
renormalize said:
Or perhaps ##sin(ax) = Im[ e^{iax}]##?
Thanks for the catch!

-Dan
 
  • Like
Likes renormalize and fresh_42

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K