I Solving the Difficult Integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Dx Integral
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Anyone have some ideas to approach the integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##?
 
Physics news on Phys.org
ergospherical said:
Anyone have some ideas to approach the integral ##\int_0^{\infty} x^{n+1} e^{-x} \sin(ax) dx##?

Using \sin ax = \frac1{2i}(e^{iax} - e^{-iax}) we express the integral as a sum of integrals of the form I_n(c) = \int_0^\infty x^n e^{cx}\,dx for complex c with \operatorname{Re}(c) &lt; 0. Then integrating by parts for n &gt; 0 we obtain <br /> \begin{split}<br /> I_n(c) &amp;= \left[\frac 1c x^ne^{cx}\right]_0^\infty - \frac{n}{c}I_{n-1}(c) \\<br /> &amp;= -\frac nc I_{n-1}(c)<br /> \end{split} and thus <br /> I_n(c) = (-1)^n\frac{n!}{c^n}I_0(c). Then <br /> \begin{split}<br /> \int_)^\infty x^{n+1}e^{-x} \sin ax\,dx &amp;= <br /> \frac {I_{n+1}(-1+ai) - I_{n+1}(-1-ai)}{2i} \\<br /> &amp;= \frac{(-1)^{n+1}(n+1)!}{2i}\left(\frac{I_0(-1+ai)}{(-1+ai)^{n+1}} - \frac{I_0(-1-ai)}{(-1-ai)^{n+1}}\right).\end{split}
 
  • Like
Likes ergospherical, topsquark and jedishrfu
To add to pasmith's idea:

Or, slightly more simply, use ##sin(ax) = Im[ e^{iax}]##.

Then
##\displaystyle \int_0^{\infty} x^{n+1} e^{-x} \, sin(ax) \, dx = Im \left [ \int_0^{\infty} x^{n+1} e^{-x + iax} \, dx \right ]##

-Dan
 
Last edited:
topsquark said:
Or, slightly more simply, use ##sin(ax) = Im[ e^{ia}]##.
Or perhaps ##sin(ax) = Im[ e^{iax}]##?
 
renormalize said:
Or perhaps ##sin(ax) = Im[ e^{iax}]##?
Thanks for the catch!

-Dan
 
  • Like
Likes renormalize and fresh_42

Similar threads

Back
Top