MHB Solving the D'Lembert Method with Multiple Conditions

  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Method
Click For Summary
The discussion focuses on solving the wave equation using D'Alembert's formula with initial conditions defined by piecewise functions. The initial condition is expressed using Heaviside functions, specifically \( u(x,0) = H(x-1) - H(x-2) \), which simplifies the application of D'Alembert's formula. Participants clarify the need to apply the formula to each Heaviside function separately to determine the solution. The goal is to identify the points in the semiplane \( t > 0 \) where \( u(x,t) = 0 \). The conversation emphasizes understanding the application of D'Alembert's method in the context of multiple initial conditions.
Markov2
Messages
149
Reaction score
0
Consider

$\begin{aligned} & {{u}_{tt}}=9{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=\left\{ \begin{align}
& 1,\text{ }x\in [1,2] \\
& 0,\text{ }x\notin [1,2] \\
\end{align} \right. \\
& {{u}_{t}}(x,0)=0,
\end{aligned}
$

then determine the points of the semiplane $t>0$ where $u(x,t)=0.$

Okay I know the D'Lembert's formula, but I don't know how to apply it since having $u(x,0)$ defined by two conditions.
Thanks!
 
Physics news on Phys.org
Markov said:
Consider

$\begin{aligned} & {{u}_{tt}}=9{{u}_{xx}},\text{ }x\in \mathbb{R},\text{ }t>0, \\
& u(x,0)=\left\{ \begin{align}
& 1,\text{ }x\in [1,2] \\
& 0,\text{ }x\notin [1,2] \\
\end{align} \right. \\
& {{u}_{t}}(x,0)=0,
\end{aligned}
$

then determine the points of the semiplane $t>0$ where $u(x,t)=0.$

Okay I know the D'Lembert's formula, but I don't know how to apply it since having $u(x,0)$ defined by two conditions.
Thanks!
RE-write your IC as

$u(x,0) = H(x-1)-H(x-2)$

then apply the D'Almbert Formula.
 
Thank you Jester! I'm sorry but I'm a bit lost on how applying D'lembert's formula, do I need to apply it for $H(x-1)$ and $H(x-2)$ ? How to do so?

Much appreciated!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 65 ·
3
Replies
65
Views
7K
  • · Replies 0 ·
Replies
0
Views
2K