Solving the Electrolysis Dilemma

  • Thread starter Thread starter arydberg
  • Start date Start date
  • Tags Tags
    Electrolysis
Click For Summary
SUMMARY

The forum discussion centers on the inefficiencies encountered when scaling an electrolysis cell designed to produce hydrogen and oxygen. The user initially employed two stainless steel plates in a KOH solution, achieving satisfactory results. However, upon transitioning to a configuration of multiple alternating plates, the expected increase in gas production did not materialize. Key insights reveal that maintaining constant electrode spacing while increasing electrode area is crucial for reducing electrical resistance and enhancing current flow, thereby improving gas output.

PREREQUISITES
  • Understanding of electrolysis and its principles
  • Knowledge of Ohm's Law and electrical resistance
  • Familiarity with KOH as an electrolyte
  • Basic concepts of electrode configuration in electrochemical cells
NEXT STEPS
  • Research the effects of electrode area and spacing on electrolysis efficiency
  • Explore advanced configurations for electrolysis cells to optimize gas production
  • Study the internal resistance of power sources and its impact on electrolysis
  • Investigate different electrolytes and their resistivity in electrochemical applications
USEFUL FOR

Electrochemists, hobbyists experimenting with electrolysis, and engineers seeking to optimize hydrogen production methods will benefit from this discussion.

arydberg
Messages
244
Reaction score
31
I tried to set up a electrolysis cell to produce hydrogen and oxygen. I used 2 stainless steel plates in KOH it worked fine. The problem came about when I tried to replace the 2 plates with a stack of 5 or 6 pairs of plates wired + - + - + etc. All the positive plates were wired together and all the negative plates were wired together.

I expected this arrangement to draw more current and produce more gas but it did not. Yet it is used in lead acid batteries and works fine. I did manage to improve the output by using two long parallel plates wound together in a spiral fashion.

Why is it that stacks of alternating plates do not improve the hydrogen and oxygen produced?
 
Engineering news on Phys.org
This is not arrangement that is used in lead batteries, they are made of identical cells connected in series.

Perhaps your current source is already working at maximum output?
 
Each cell in a lead acid battery is made up of parallel plates a lead compound in a + - + - configuration. Then the cells are connected in series.
 
OK, small misunderstanding.
 
What are you using for your power source?
 
12 volt car battery.
 
R = \rho (l/A)

So the resistance in your cell drops as you increase your electrode area (A).

The resistance however also increases as you decrease the electrode spacing (l).

So in effect what you may have done is kept the overall cell resistance constant - so current shouldn't change.

rho is the electrical resistivity of the system - related to your electrolyte

If you wish to increase the current I would increase the electrode AREA but keep the electrode spacing constant. That is enlarge the cell volume to fit more electrodes but kep the electrode gap the same. The electrical resistance in this case would drop and the current will increase - MORE gas evolution at the electrode surface


Conversely, you can decrease the electrode spacing but keep the electrode area the same.
 
Driftwood1 said:
The resistance however also increases as you decrease the electrode spacing (l).

Quite the opposite.

Which you admitted in the last phrase BTW.
 
Borek said:
Quite the opposite.

Which you admitted in the last phrase BTW.

typo - of course R is directly proportional to the inter-electrode distance and inversely proportional to the Area of the electrodes.

The point was to highlight the fact that you can double the electrode area, but if you half the electrode gap at the same time the electrical resistance remains constant so the current does not change.

If we can get the electrode area and spacing for both configuations I suspect that the ratio (l/A) has remained constant so the resistance hasnt changed - explains why there is no increase in current and no increase in gas generation at the electrode surface.

cheers
 
  • #10
Driftwood1 said:
The point was to highlight the fact that you can double the electrode area, but if you half the electrode gap at the same time the electrical resistance remains constant so the current does not change.

If you double area you have also to double the distance to not change resistance. If you half the electrode gap while doubling electrode surface, resulting resistance will be four times lower.
 
Last edited:
  • #11
Very basic high school level science generally includes Ohms law and how it applies to various applications.

In a battery cell for example The Electrical resistance R is directly proportional to the inter-electrode spacing and inversely proportional to the area of the electrode (this is for uniform constant electric fields - for other geometries this simple equaton does not apply)

The proportionallity constant (rho) is the resistivity of the electrolyte or substance between the anaode and cathode.

So, if you double the electrode area by introducing more electrodes, but at the same time you also double the inter-electrode spacing then the electrical resistance remains the same - current is constant - therefore gas production doesn't change

Amazing how Ohms law creaps into things

Where has Arydberg vanished to?
 
Last edited:
  • #12
Borek said:
Perhaps your current source is already working at maximum output?

interesting...

The electrode gap is obviously NOT equal zero and the electrode area isn't infinite.

Power = I^2{rho(l/A)}
 
Last edited:
  • #13
You are forgetting about internal resistance of the current source, it limits maximum current in the system. You can't get more juice from the power supply than it was designed for, even if you short circuit it.
 
  • #14
Borek said:
You are forgetting about internal resistance of the current source, it limits maximum current in the system. You can't get more juice from the power supply than it was designed for, even if you short circuit it.

true...

The electrode plates however behave like a linear Ohmic resistor (if we assume that the electrode gap is constant producing a uniform electric field and current density)

Why doesn't Arydberg provide the dimensions of the initial and modified electrode set up?
 
  • #15
I did not change the electrode spacing in all cases it was about 1/4 inch. You are trying to make a simple problem out of this. It is not simple.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
15K
Replies
9
Views
3K