MHB Solving the Equation: x+[2x]+[3x]=7

  • Thread starter Thread starter solakis1
  • Start date Start date
AI Thread Summary
The equation x+[2x]+[3x]=7 is discussed as an easy problem, prompting questions about its posting. Participants categorize real numbers into various sets based on whether they are integers or non-integers and their relationships with 2x and 3x. A reference to Desmos suggests that the equation appears to imply x = 4/3, but this is incorrect as it does not satisfy the equation. The correct interpretation indicates that 4/3 leads to a left-hand side of 8, not matching the right-hand side of 7. The conversation emphasizes the importance of careful analysis in solving such equations.
solakis1
Messages
407
Reaction score
0
An easy one:

x+[2x]+[3x]=7
 
Mathematics news on Phys.org
Yes, that is an easy problem! Why did you post it?

I would start by dividing the real numbers into classes:
1) The set of integers.
2) The set of non-integer, x, such that 2x is an integer
3) The set of non-integers, x, such that 2x is not an integer but 3x is.
4) The set of non-integers, x, such that neither 2x nor 3x is an integer but 6x is.
5) The set all other real numbers.
 
Because RHS is integer so LHS is integer

As $\lfloor 2x \rfloor$ and $\lfloor 3x \rfloor$ are integers so x is integer so $\lfloor 2x \rfloor = 2x $ and $\lfloor 3x \rfloor = 3x$

so x + 2x + 3x = 6x = 7 so $x = \frac{7}{6}$ which is not integer so NO solution
 
Beer soaked ramblings follow.
solakis said:
An easy one:

x+[2x]+[3x]=7
Desmos somehow gives the impression that $x + \lfloor 2x \rfloor + \lfloor 3x \rfloor = 7$ is basically the line $x = \frac{4}{3}$.
https://www.desmos.com/calculator/stz3o2wn2h
 
The answer given by Kaliprasad is the right one 7\6 is not an integer
4/3 is not a solution of the above equation LHS is 8 RHS Is 7
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top