MHB Solving the Time Needed for A & B to Complete a Job Alone

AI Thread Summary
A's work rate is three times that of B, and after working together for 4 hours, A completes the remaining job in 2 hours. The equation derived indicates that B would take approximately 7.33 hours to finish the job alone. In a separate scenario, A and B can complete a job together in 6 days, with A working twice as fast as B. The calculations suggest B would take 9 days alone, leading to confusion since A should take less time than B, indicating a misunderstanding in the setup of the problem. Clarification on the rates and time taken is needed to resolve the discrepancies.
paulmdrdo1
Messages
382
Reaction score
0
1. A’s rate of doing work is three times that of B. On a given day A and B work together for 4 hours; then B is called away and A finishes the rest of the job in 2 hours. How long would it take B to do the complete job alone?

if I let x = B's rate of work and 3x = A's rate of work, I'll have this equation,

$\displaystyle 4\left(\frac{1}{x}+\frac{1}{3x}\right)+2\frac{1}{x}=1$

then, $x=7\frac{1}{3}$ and $3x=22$ is this correct?

2. A and B working together can complete a job in 6 days. A works twice as fast as B. How
many days would it take each of them, working alone, to complete the job?

let x = required time for B to finish a job alone, 2x = required time for A to finish a job alone

$\displaystyle 6\left(\frac{1}{x}+\frac{1}{2x}\right)=1$

the answer is x = 9 days for B, and 2(9)= 18 days for A.

but this doesn't make sense. if A is twice as fast as B it will take A lesser time to complete a job than B.

please help.
 
Last edited:
Mathematics news on Phys.org
Hello, paulmdrdo!

1. A’s rate of doing work is three times that of B. On a given day A and B work together for 4 hours, then B is called away and A finishes the rest of the job in 2 hours.
How long would it take B to do the complete job alone?

if I let x = B's rate of work and 3x = A's rate of work, I'll have this equation,

$\displaystyle 4\left(\frac{1}{x}+\frac{1}{3x}\right)+2\frac{1}{x}=1$

then, $x=7\frac{1}{3}$ and $3x=22$ is this correct?
Are you sure you know what "rate of work" means?

You have: A's rate of work is 22.
What does that mean?

Does it take 22 hours for A to do the job?
Does he get $22 per hour?

Check the original question.
And note that you didn't answer it.
2. A and B working together can complete a job in 6 days.
A works twice as fast as B.
How many days would it take each of them, working alone,
to complete the job?

let x = required time for B to finish a job alone,
2x = required time for A to finish a job alone.
. So A takes twice as long?

$\displaystyle 6\left(\frac{1}{x}+\frac{1}{2x}\right)=1$

the answer is x = 9 days for B, and 2(9)= 18 days for A.

but this doesn't make sense. if A is twice as fast as B it will take A lesser time to complete a job than B.

please help.
Look at what you wrote.

You said A takes twice as long as B.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
4
Views
11K
Back
Top