MHB Solving $x,y,z$: Equations (1), (2), (3)

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion focuses on solving the equations involving variables x, y, and z defined by three reciprocal relationships. The equations lead to a series of transformations and substitutions, ultimately resulting in expressions for x, y, and z in terms of each other. After a series of calculations, the values are determined as y = 23/6, x = 23/10, and z = 23/2. The solution showcases the methodical approach to finding the values while ensuring that none of the variables are zero. The final results are presented clearly, confirming the successful resolution of the equations.
Albert1
Messages
1,221
Reaction score
0
find solutions of $x,y,z$

$\dfrac {1}{x}+\dfrac {1}{y+z}=\dfrac {1}{2}-----(1)$

$\dfrac {1}{y}+\dfrac {1}{z+x}=\dfrac {1}{3}-----(2)$

$\dfrac {1}{z}+\dfrac {1}{x+y}=\dfrac {1}{4}-----(3)$
 
Mathematics news on Phys.org
Hello, Albert!

I have a very looong solution.

Find solutions of $x,y,z$

.\begin{array}{cccc}\frac {1}{x}+\frac {1}{y+z} &amp;=&amp; \frac {1}{2} &amp; [1[ \\<br /> <br /> \frac {1}{y}+\frac {1}{z+x}&amp;=&amp;\frac {1}{3} &amp; [2] \\<br /> <br /> \frac {1}{z}+\frac {1}{x+y}&amp;=&amp;\frac {1}{4} &amp; (3) \end{array}
Note that: .x,y,z\, \ne\,0.

\begin{array}{cccccccccc}[1]\!:\;2y + 2x + 2x \:=\:x(y+z) &amp;\Rightarrow&amp; x + y + z \:=\: \frac{xy+xz}{2} &amp; [4] \\<br /> [2]\!:\; 3x + 3x + 3y \:=\:y(x+z) &amp;\Rightarrow &amp; x+y+z \:=\:\frac{xy+yz}{3} &amp; [5] \\<br /> [3]\!:\; 4x+3y+4z \:=\:z(x+y) &amp; \Rightarrow &amp; x+y+z \:=\:\frac{xz+yz}{4} &amp; [6] \end{array}

\text{From }[4],[5],[6]\!:\;\underbrace{\frac{xy+xz}{2}}_{[7]} \:=\:\underbrace{\frac{xy + yz}{3}}_{[8]} \:=\:\underbrace{\frac{xz+yz}{4}}_{[9]}

[7]=[8]\!:\;3xy + 3xz \:=\:2xy + 2yz \;\;\;\Rightarrow\;\;\; x \:=\:\frac{2yz}{y+3x}\;\;[10]

[8] = [9]\!:\;4xy + 4yz \:=\:3xz + 3yz \;\;\;\Rightarrow\;\;\;x \:=\:\frac{yz}{3x-4y}\;\;[11]

[10]=[11]\!:\;\frac{2yz}{y+3x} \:=\:\frac{yz}{3z-4y} \quad\Rightarrow\quad z \:=\:3y\;\;[12]

Substitute into [10]: .x \:=\:\frac{2y(3y)}{y+3(3y)} \quad\Rightarrow\quad x \:=\:\tfrac{3}{5}y\;\;[13]

Substitute [12] and [13] into [4]:
.. 2y + 2(3y) + 2\left(\tfrac{3}{5}y\right) \;=\; \left(\tfrac{3}{5}y\right)y + \left(\tfrac{3}{5}y\right)(3y)
. . \tfrac{46}{5}y \:=\:\tfrac{12}{5}y^2 \quad\Rightarrow\quad 6y^2\:=\:23y \quad\Rightarrow\quad \boxed{y \:=\:\tfrac{23}{6}}

Substitute onto [13}: .x \:=\:\tfrac{3}{5}\left(\tfrac{23}{6}\right) \quad\Rightarrow\quad \boxed{x \:=\:\frac{23}{10}}

Substitute into [12]: .z \:=\:3\left(\tfrac{23}{6}\right) \quad\Rightarrow\quad \boxed{z \:=\:\frac{23}{2}}
 
http://www.mymathforum.com/viewtopic.php?t=36640&p=151646
 
Opalg said:
http://www.mymathforum.com/viewtopic.php?t=36640&p=151646
Nicely done!
very good solution there :)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K