- 24,488
- 15,057
This is exactly, why I consider the teaching of old quantum theory in the beginning of quantum physics courses as a sin. First of all in quantum theory there is no wave-paticle duality. In my opinion it's the greatest overall achievement of modern quantum theory to have get rid of such contradictory pictures about nature. Formally you are right, and the Schrödinger equation has some features of a classical (wave) field, but that's only a mathematical analogy. That any partial differential equation in a space-time with the symmetries and admitting a causality principle (orientation of time) we usually assume (Galilei or Poincare symmetry for Newtonian and special relativistic physics, respectively) has similar forms than any other is very natural, because these symmetries are restrictive enough to determine at least a large part of the form such equations should take. Nevertheless, the Schrödinger-wave function is not a classical field and thus does not describe any kind of classical waves. You don't observe waves, when you consider a single particle but a single particle being detected somewhere in space, and these particles are not "smeared" out in a continuum like way, as a superficial interpretation of the Schrödinger wave function as a classical field would suggest. The right interpretation was given by Born: It describes the probability amplitudes to find a particle at a place, i.e., its modulus squared is the position-probability distribution for particles.atyy said:Wave particle duality: Still true in QM where the Hilbert space is particles, and the Schroedinger equation is waves. Also true in non-rigourous QFT where there are Fock space particles and waves via the Heisenberg picture equations of motion for the operators.
de Broglie relations: Still true for the relativistic free quantum fields
Also I don't see, why you say the Hilbert-space formalism describes particles. The abstract Hilbert-space formalism consists of abstract mathematical objects, which have the advantage that you cannot mix them up with the hand-waving associations of the old quantum theory. That's why I think, the ideal way to teach quantum theory is to start right away with the basis-free formulation in (rigged) Hilbert space. Sakurai's textbook shows a clever way, how to do this without getting into all mathematical subtleties of unbound operators. The aim in teaching quantum theory must be to introduce the students to the fact that the micro-world is "unintuitive", and that's so, because our senses and brains are not made primarily to comprehend or describe the microcosm but to survive in a macroscopic world, which behaves quite "classically", although the underlying "mechanism" is of course quantum.
To teach this, you don't need old-fashioned precursor models, of which the worst is the Bohr-Sommerfeld model of the atom, because that's not even right in any sense of the modern theory. I never figured out, why the model gets the hydrogen energy levels right. The reason must ly in the very high symmetry of the hydrogen-atom hamiltonian (an SO(4) for the bound energy eigenstates, a Galilei symmetry for the zero-modes, and a SO(1,3) for the other scattering states). The same holds, of course true, for the N-dimensional harmonic oscillator which always has a SU(N) symmetry. For the harmonic oscillator it's clear, why it looks so classical also in quantum theory: The equations of motion of the operators representing observables in the Heisenberg picture are linear and thus the expectation values obey exactly the classical equations of motion.